Dimitris Sacharidis
Dimitris Sacharidis
Home
Research
Publications
Posts
Courses
Contact
Explainability
AIDE - Antithetical, Intent-based, and Diverse Example-Based Explanations
For many use-cases, it is often important to explain the prediction of a black-box model by identifying the most influential training data samples. We propose AIDE, Antithetical, Intent-based, and Diverse Example-Based Explanations, an approach for providing antithetical (i.
Ikhtiyor Nematov
,
Dimitris Sacharidis
,
Katja Hose
,
Tomer Sagi
PDF
GLANCE - Global Actions in a Nutshell for Counterfactual Explainability
We propose a method for global explainability of black box models using counterfactual explanations. A counterfactual explanation locally explains an outcome by providing the minimal changes necessary to reverse the outcome, e.
Ioannis Z. Emiris
,
Dimitris Fotakis
,
Giorgos Giannopoulos
,
Dimitrios Gunopulos
,
Loukas Kavouras
,
Kleopatra Markou
,
Eleni Psaroudaki
,
Dimitrios Rontogiannis
,
Dimitris Sacharidis
,
Nikolaos Theologitis
,
Dimitrios Tomaras
,
Konstantinos Tsopelas
PDF
Code
Fairness Aware Counterfactuals for Subgroups
We propose novel fairness definitions concerning algorithmic recourse. For an individual that receives an undesirable outcome (e.g., loan application rejected), recourse is a way to reverse the outcome (e.g., increase down payment).
Loukas Kavouras
,
Konstantinos Tsopelas
,
Giorgos Giannopoulos
,
Dimitris Sacharidis
,
Eleni Psaroudaki
,
Nikolaos Theologitis
,
Dimitrios Rontogiannis
,
Dimitris Fotakis
,
Ioannis Z. Emiris
PDF
Cite
Code
DOI
arXiv
URL
Rank A*
Cite
×