
AIDE: Antithetical, Intent-based, and Diverse Example-Based Explanations

Abstract

For many use-cases, it is often important to explain
the prediction of a black-box model by identifying
the most influential training data samples. Existing
approaches lack customization for user intent and
often provide a homogeneous set of explanation
samples, failing to reveal the model’s reasoning
from different angles.
In this paper, we propose AIDE, an approach
for providing antithetical (i.e., contrastive), intent-
based, diverse explanations for opaque and com-
plex models. AIDE distinguishes three types of
explainability intents: interpreting a correct, in-
vestigating a wrong, and clarifying an ambiguous
prediction. For each intent, AIDE selects an ap-
propriate set of influential training samples that
support or oppose the prediction either directly or
by contrast. To provide a succinct summary, AIDE
uses diversity-aware sampling to avoid redundancy
and increase coverage of the training data.
We demonstrate the effectiveness of AIDE on im-
age and text classification tasks, in three ways:
qualitatively, comparing anecdotal evidence from
AIDE and other example-based approaches; quan-
titatively, assessing correctness and faithfulness;
and via a user study, evaluating multiple aspects of
AIDE. The results show that AIDE addresses the
limitations of existing methods and exhibits several
desirable traits for an explainability method.

1 INTRODUCTION

Failure of ML-based systems in numerous cases, e.g., due to
data errors, biases, misalignment [24, 32], has prompted re-
searchers to work on explainability techniques. Different tax-
onomies for such methods exist, e.g., [12], but one common
classification is on the type of explanation generated [22].

Model-based methods involve creating interpretable surro-
gate models, such as decision trees or linear models, which
approximate the complex black box ML model [29, 31].
Feature-based methods focus on pinpointing important fea-
tures of the input, such as words in text or parts in an im-
age, which contribute the most to the prediction [28, 8, 4].
Example-based methods provide explanations for a specific
target outcome by deriving the importance of training sam-
ples [15, 9, 18, 19, 10, 25], or provide a global overview of
the model identifying representative examples [34, 27].

Example-based explainability offers several advantages.
They are typically model-agnostic, and offer easy to un-
derstand explanations. More importantly, as they seek to
discover a causal relationship between training examples
and model behavior, they can assist in model debugging and
data cleansing [14]. However, they have two key limitations.

First, they don’t offer contrastivity [23], which is key as-
pect in how humans understand decisions [20]. While most
methods can distinguish between supporters (aka propo-
nents, helpful or excitatory examples), and opposers (aka
opponents, harmful or inhibitory examples), they do not
relate this information to ground truth labels (examples of
class same as or different than predicted) or to the explana-
tion intent (is the prediction correct/wrong, hard to tell).

More importantly, existing example-based methods are
highly susceptible to class outliers. An outlier is a train-
ing instance that is mislabeled, or an instance (training or
target) that is ambiguous and does not clearly belong to a
class. Mislabeled or ambiguous training instances tend to
be explanations for any target instance, as they play a sig-
nificant role in forming the decision boundary. Ambiguous
target instances confuse the classifier (low confidence) and
make it hard to pick good explanations.

In this paper, we propose a novel Antithetical, Intent-based,
and Diverse Example-based explainability (AIDE), that of-
fers contrastivity and is robust to outliers. At its core, AIDE
is based on the concept of influence functions [13, 18]. For
a fixed target instance, the influence of a training sample
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IF

Explanation = Top K influential training samples

’U 447801259231 have a secret admirer who 

is looking 2 make contact with U-find out 

who they R*reveal who thinks UR so special-

call on 09058094597’  = SPAM

’U have a secret admirer who is looking 2 make contact with U-find out who they R*reveal 

who thinks UR so special call on 09058094599’= SPAM

'U have a secret admirer who is looking 2 make contact with U-find out who they R*reveal 

who thinks UR so special-call on 09058094594'= SPAM

’U have a Secret Admirer who is looking 2 make contact with U-find out who they R*reveal 

who thinks UR so special-call on 09065171142 stopsms-08718727870150ppm’ = SPAM

’U have a secret admirer who is looking 2 make contact with U-find out who they R*reveal 

who thinks UR so special call on 09058094565’ = SPAM

'u have a secret admirer who is looking 2 make contact with u find out who 

they r reveal who thinks ur so special call on 09058094565'= SPAM

'our dating service has been asked 2 contact u by someone shy call 

09058091870 now all will be revealed pobox84 m26 3uz 150p'= SPAM

'i have a date on sunday with will ‘= HAM

'text her if she doesnt reply let me know so i can have her log in' = HAM
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Figure 1: Explanations for a spam classification task, depicting a correctly classified spam message and its influence-based
explanations generated by IF and AIDE.

is a score conveying its impact on the classifier’s outcome.
Ideally, the influence is the change observed in the loss
value for the target if the training sample was excluded from
the training data. While influence scores can be estimated
by methods, such as TraceIn [9] and Datamodels [15], we
use the framework of the influence function approach [18],
termed IF, to efficiently compute influence scores.

To better understand AIDE’s contribution, we first showcase
the issues that plague example-based explainability methods,
taking IF as the representative—extensive qualitative and
quantitative comparison with other methods is presented
in Section 4. Consider a classifier that predicts whether
short text messages are spam. Figure 1 shows that for the
depicted target message, the prediction is spam. This is a
correct prediction, and IF identifies the four most influential
training samples at the top of Figure 1. We observe that
explanations lack diversity, as they are highly similar to each
other. More importantly however, they lack contrastivity,
as the user does not gain any insight about how the model
decides what is spam and what not; all the user learns is that
similar texts were labelled spam. The issue of susceptibility
to outliers does not manifest in this example, mainly because
the prediction is clearly correct. However, it manifests when
for example what the correct prediction should be is not
clear, as in in Figure 2.

Contribution. AIDE features contrastivity. Given a target in-
stance to be explained, AIDE computes the influence of each
training sample. But to present an explainability summary,
AIDE distinguishes samples along two key explainability
dimensions. The first is the influence polarity: a sample with
positive influence supports the prediction, while one with
negative influence opposes the decision. The second dimen-
sion is the label of the training sample, which is either the
same or opposite as the target instance. These two dimen-
sions define the four AIDE quadrants, denoted as support
(S), support by contrast (SC), oppose (O), and oppose by

contrast (OC). Assuming a binary classifier and that the
prediction is y ∈ {−1, 1}, intuitively, S explains “why it’s
y”, SC explains “why it’s not −y”, O explains “why it might
be −y”, and OC explains “why it might not be y”. These
quadrants offer contrastivity, providing to the user answers
to distinct counterfactual questions. Figure 1 depicts the
quadrants at the bottom left.

AIDE is intent-aware. A user faced with a correct prediction,
would more likely need additional evidence that the model
has learned the correct patterns. A user recognizing a wrong
prediction would want to narrow down the sources of the
problem. A user looking at an ambiguous prediction, would
want to learn more about how the model handles such cases.
AIDE customizes its explanations by distinguishing three
types of intents a user might have: interpreting a correct, in-
vestigating a wrong, or clarifying an ambiguous prediction.
For a seemingly correct prediction, AIDE presents the most
influential but diverse samples from the support and support
by contrast (S and SC) quadrants. The intuition is that the
user needs to better understand where the decision boundary
lies. For an ambiguous prediction, AIDE presents samples
from the support and oppose (S and O) quadrants. The in-
tuition here is to contrast between two possible predictions
and let the user decide whether one is better than the other.
For a wrong prediction, AIDE presents samples from all
quadrants to allow the user to investigate evidence for all
alternatives. An example for interpreting a correct predic-
tion is depicted at the bottom right of Figure 1, where the
presented examples help the user increase their confidence
that the model’s prediction is correct.

AIDE outperforms state-of-the-art example-based methods.
We perform an extensive qualitative and quantitative com-
parison against state-of-the-art methods for example-based
explainability. Shapley-based approaches [10, 19] were ex-
cluded as (a) they primarily aim to capture the overall contri-
bution of training samples to the trained model (data valua-
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tion), and not geared for local explanations, and (b) they can
be impractical for local explainability due to their high com-
putational cost. The main conclusions drawn are as follows.
Datamodels [15] approximate well the influence scores, but
perform poorly for outlier targets. The principal reason is
that Datamodels explain a class of models, and not a partic-
ular model. They thus fail to identify nuances picked up by
a single model; while an unambiguous target will receive
similar predictions by all models in the class, models will
greatly differ in their predictions for an ambiguous target.
TraceIn [9] is highly susceptible to outliers in the training
data and performs poorly in tests of correctness and truthful-
ness. The reason lies in the way TraceIn estimates influence:
it considers the difference in the total (training) loss when a
training sample is included or not during checkpoints; out-
liers have high individual loss, contributing significantly to
the total loss, and are thus awarded high importance. Regu-
lar Influence functions (IF) are similarly affected by outliers
in the training data. RelatIF [5] seeks to address this prob-
lem, by penalizing samples that have high loss. However,
these high-loss samples can at times be highly informative.
For example to explain a target instance that is ambiguous,
it is often insightful to present those outlier training exam-
ples that are similar, so as to potentially uncover interesting
labelling rules or protocols. In contrast, AIDE considers
outliers as long as they are relevant to the target instance.

2 RELATED WORK

Example-based Explanations. Beyond influence functions,
Data Shapley [10] is one of the prominent methods in this
line, which just like its feature-based version [21] uses the
game theory and revises the contribution of a point in all
possible subsets to uncover its marginal effect for the mod-
els’ performance. Due to the computational exhaustiveness
of possible sets, even the approximation based on sam-
pling methods e.g. Monte Carlo (MC) or Truncated MC, is
still computationally expensive. A more robust version of
datashap, betashap proposed by [19] reduces noise in impor-
tance scores, however, still inherits the high cost of computa-
tion. Both datashap and betashap compute the contribution
of a single point for the models predictive performance over-
all, and using them for providing local explanations per
sample would make it completely impractical in terms of
cost and thus are not chosen as baselines. Another very sim-
ilar to the IF method and an obvious baseline, TraceIn [9]
measures the influence of a training sample X on a specific
test sample X0 as the cumulative loss change on X0 due to
updates from mini-batches containing X . They practically
approximate this with TraceInCP, which considers check-
points during training and sums the dot product of gradients
at X and X0 at each checkpoint. Another interesting and
unconventional work [15] fixes a test point to explain and
samples a large number of subsets from the training set and
trains models with each of these subsets. It then trains a lin-

ear model where the input will be 1Si encoding of a subset
and the output is the performance of the model trained on
this subset for the test sample of interest. The weights of
the linear model will represent the importance score of a
training sample in the same position. To obtain a good result
a huge number of intermediate models has to be trained on
subsets, which is exhaustive, and thus a faster version of
datamodels was proposed by [25] and claimed to preserve
almost the same accuracy. However, since our focus is on
the effectiveness of explanation we still use the original
datamodels as a baseline.

Evaluating Explanations. A profound study of
functionality-grounded strategies by [23], advocates
twelve quantifiable properties that can be evaluated to
assess the quality of explanations. They categorize the
state-of-the-art metrics into twelve classes depending on
which property the metric focuses on and what type of
explanation is provided. The following properties are
most relevant for local, example-based explanations: (1)
Consistency and continuity, both describe how deterministic
the explanation is concerning identical and similar samples,
assuming that these samples should have identical and
similar explanations, in many works they are also referred
as the faithfulness [16, 1] of explanation and has gained
popularity in explainability domain; (2) Contrastivity is
the ability of an explanation to interpret classes different
than the prediction class; (3) Compactness is encoded in the
size of an explanation as well as calculating a redundancy
in the explanation; (4) Context describes how relevant the
explanation is to the user needs; (5) Controlled synthetic
Data check - Controlled Experiment: a synthetic dataset is
developed with a predetermined reasoning, ensuring that
the predictive model aligns with this reasoning, as verified
through metrics like accuracy. An assessment is done to
check whether the explanation provided by the model
corresponds to the same reasoning embedded in the data
generation process, [2, 6].

3 THE AIDE FRAMEWORK

3.1 PRELIMINARIES

In what follows, we assume a classification task where a
model fθ, described by parameters θ, maps an input x ∈
X to a predicted class fθ(x) ∈ Y . We use the notation
z = (x, y) to refer to a pair of input and its actual class.
Let S ⊆ X × Y denote a training set of size n = |S|.
Let ℓ(z,θ) be the loss function of the model for z, and let
L(S,θ) = 1

n

∑
z∈S ℓ(z,θ) denote the training objective,

i.e., the mean loss for set S .1 We denote as θ∗
0 the parameters

that minimize the objective: θ∗
0 = argminθ L(S,θ).

The goal is to explain the model’s prediction for a spe-

1We assume regularization terms are folded in L.
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cific test instance zt = (xt, yt), in terms of the influence
each training example z ∈ S makes on the model’s predic-
tion fθ(xt), and specifically on its prediction loss ℓ(zt,θ∗

0).
Concretely, the influence of z ∈ S on zt is defined as the
change in the prediction loss after removing example z from
the training data [18]. The removal of a training example
changes the objective and thus leads to a different model
and parameters. Suppose that instead of removing z we
change the weight of its contribution (i.e., its training loss)
to the objective by some value ϵ. We can view the param-
eters that minimize this altered objective as a function of
ϵ, i.e., θ∗(ϵ) = argminθ{L(S,θ) + ϵℓ(x, y,θ)}. Setting
ϵ = 0, we retrieve the optimal parameters for the original
objective, i.e., θ∗(0) = θ∗

0 . Moreover, observe that θ∗(− 1
n )

corresponds to the parameters that minimize the altered ob-
jective after removing training example z. Based on this
observation, the exact influence of z on the prediction for
zt is defined as:

Iexact(z, zt) = ℓ(zt,θ
∗(−1/n))− ℓ(zt,θ

∗(0)). (1)

Computing the exact influence requires us to optimize the
loss after removing a training point z; repeating this for
each training point is prohibitively costly. Instead, we ap-
proximate the exact influence. Specifically, we view the loss
function as a function of ϵ, and make a linear approximation
of the exact influence using the derivative of ℓ at point ϵ = 0:
Iexact(z, zt) ≈ − 1

n
dℓ(zt,θ

∗)
dϵ

∣∣∣
ϵ=0

Since the term 1
n is the

same for all z, zt pairs, we simply define (approximate)
influence [18] as:

I(z, zt) = − dℓ(zt,θ
∗)

dϵ

∣∣∣∣
ϵ=0

. (2)

When the influence of z on zt is positive, the loss tends
to decrease, and we say that training example x supports
the prediction for zt; otherwise, we say that the example
opposes the prediction.

To compute the derivative of the loss, we use the chain rule
to decompose it into the derivative of loss with respect to the
parameters and the derivative of the parameters with respect
to ϵ. Concretely, we have:

I(z, zt) = − ∇⊺
θ∗ℓ(zt,θ

∗)|
θ∗=θ∗

0

dθ∗

dϵ

∣∣∣∣
ϵ=0

, (3)

which is the dot product of two row vectors, the loss gradi-
ent ∇θ∗ℓ at θ∗ = θ∗(0) and the derivative of the optimal
parameters for the altered objective dθ∗

dϵ at ϵ = 0.

It can be shown [7] that under certain conditions (second
order differentiability and convexity of the loss function)
the derivative of θ∗ can be expressed as:

dθ∗

dϵ

∣∣∣∣
ϵ=0

= −H−1
θ∗ ∇θ∗ℓ(z,θ∗)|θ∗=θ∗

0
, (4)

where Hθ∗ is the Hessian matrix (containing the second or-
der partial derivatives) of the objective L(S,θ∗) calculated
at θ∗ = θ∗

0 .

Defining the vector function g(z) as the gradient of the loss
of the example z calculated at θ∗ = θ∗

0 , and substituting it
in Equations 3 and 4, we get:

I(z, zt) = g⊺(zt)H
−1
θ∗ g(z). (5)

To explain the prediction for zt, we use Equation 5 to com-
pute the influence of each training example z, which can
be done efficiently as suggested in [18]. The IF explanation
[18] for the prediction for zt consists of the top-k training
examples with the highest influence.

3.2 AIDE INGREDIENTS

Existing approaches for influence-based explainability [18,
5] compile an explanation as a set of highly influential train-
ing examples. We claim that other aspects, besides high
influence, are also important. Specifically, AIDE creates
explanations that contain training examples with negative
influence, considers their labels, their proximity to the test
instance, and their diversity.

Negative Influence Recall that negative influence means
that removing the training example decreases the loss, thus
opposing the prediction. Let us investigate closely when an
example can have high-magnitude negative influence.

For the following discussion, assume a binary classification
task, i.e., Y = {0, 1}, where the model predicts the proba-
bility p∗θ(x) of an input z = (x, y) belonging to the positive
class. Further assume that the loss function is the logistic
loss (binary cross entropy):

ℓ(z,θ∗) = − (y log(p∗θ(x)) + (1− y) log(1− p∗θ(x)))

Consider a test instance zt = (xt, yt) and let z′
t =

(xt, 1− yt) be a counterfactual instance with the opposite
label. Then, for some training point z the following lemma
associates its influence for the predictions for zt and z′

t.

Lemma 1. In binary classification with logistic loss, the
influence of a training point z to the predictions of zt =
(xt, yt) and z′

t = (xt, 1− yt) is related as follows:

I(z, zt) = −
(
1− p∗θ(xt)

p∗θ(xt)

)2yt−1

I(z, z′
t)

Suppose that z is a strong opposer to the prediction for
zt, i.e., I(z, zt) < 0 with high magnitude. Lemma 1
explains how this may occur. This can happen if z is a
strong supporter for the prediction of the opposite label, i.e.,
I(z, z′

t) > 0 with high magnitude.
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Another way is when
(

1−p∗
θ(xt)

p∗
θ(xt)

)2yt−1

is high. Let us ex-
amine what this term means. Suppose that the true class
is the positive, i.e., yt = 1. Then, the term equals the pre-
dicted odds of the model for the negative class. Conversely,
when yt = 0, the term equals the predicted odds for the
positive class. That is, the term equals the predicted odds
for the opposite class. So, the term is high when the model
is confident about the wrong prediction for zt.

Therefore, if a training example z is a strong opposer (i.e.,
has a high-magnitude negative influence), then it would be
a strong supporter if the opposite class was true (support-
ing the counterfactual z′

t), or the model is confident about
the wrong prediction, or some combination of both. Such
training examples are important to understand the model’s
decision for zt, particularly when the true class of zt is not
apparent.

Label The influence of a training example does not carry
any information about the class of the training example. It
is thus possible that a positive and a negative example have
both high influence for the test instance. While both may
support (in case they have positive influence) or oppose (in
case they have negative influence) the model’s decision, they
do so in different ways as they stand on opposite sides of
the decision boundary. One presents an analogous exam-
ple, while the other presents a contrasting example to the
test instance. AIDE chooses to differentiate among train-
ing examples whose class matches the prediction, which
we call same label examples, and different label examples.
The comparison between same and different label examples
supports contrastivity [23].

Proximity Influence is agnostic to the similarity of the train-
ing examples to the test instance. As noted in [5], there
may exist outliers and mislabeled training examples that
can exhibit high magnitude influence scores. Such examples
are often globally influential, i.e., they are influential for
many test instances, just because they are unusual. These
examples are rarely useful as an explanation, and [5] pro-
poses to normalize the influence of an example with their
global influence. Nonetheless, in some cases these outliers
are extremely useful, e.g., when explaining another outlier.

To enhance the interpretability of the explanation and to
avoid hiding useful outliers, AIDE takes a different approach
and considers the proximity P (z, zt) of a training example
z to the instance to be explained zt. Proximity should be
appropriately defined for the domain and data type. A gen-
eral approach is to consider the cosine similarity between
the model’s internal representations (e.g., embeddings) for
z and zt, i.e., P (z, zt) = sim(x̂, x̂t), where x̂, x̂t are the
representations of the training example and test instance,
respectively, and sim is the cosine similarity, which for pos-
itive coordinates takes values in [0, 1].

Diversity Example-based explainability methods, like IF,

RelatIF, and AIDE, return to the user a small set of train-
ing examples, aiming for explanation compactness [23]. It
is thus important that the set of examples avoids redun-
dancy. AIDE, in contrast to prior work [18, 5], considers
the diversity of the explanation set. Assuming an internal
representation of training examples and an appropriate simi-
larity measure sim, we define diversity of a set E of training
examples as D(E) = 1− 1

|E|(|E|−1)

∑
z,z′∈E sim(x̂, x̂′).

3.3 AIDE QUADRANTS

AIDE constructs four distinct explanation lists for a specific
test instance zt to be explained. These lists contain training
examples that (1) have influence of high magnitude, (2) have
high proximity to zt, (3) are diverse, and (4) lie in the four
quadrants formed by two dimensions, influence (positive
or negative), and label (same as or different from the test
instance). We name these quadrants as follows.

Support. It comprises examples with positive influence and
with the same label as the test instance. They play a positive
role in the prediction and resemble the test instance in terms
of their characteristics: “You get the same outcome with
these”.

Support by Contrast. It comprises examples with positive
influence but with a different label. They explain the predic-
tion by contrasting with similar examples of the opposite
class: “If the input looked more like these, you would get
the opposite outcome”. They act similar to nearest counter-
factual explanations [33, 17], but with the benefit that they
represent actual, and not synthesized, examples.

Oppose. It comprises examples with negative influence and
different labels. These examples are analogous to the test
instance if it had the opposite label, and persuade the model
that the test instance should belong to their class instead:
“The outcome is incorrect, because the input looks more like
these”.

Oppose by Contrast. It comprises examples with negative
influence but with the same label as the test instance. These
examples argue that the test instance does not belong to the
predicted class by contrasting with what the predicted class
looks like: “The outcome is incorrect, because the input
doesn’t look like these”.

To select the appropriate examples for each quadrant, we
perform a series of steps. After partitioning the training
examples in the four quadrants, we select only examples
with high magnitude. We use the Interquartile Range (IQR)
method, [3], to keep examples with positive influence above
Q3 + λIQR, and to keep examples with negative influence
below Q1 − λIQR, where Q1 and Q3 are the first and the
third quartiles of the influence distribution, IQR = Q3 −
Q1, and λ is a coefficient that controls the number of high-
magnitude influential points, and is empirically determined.
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After this filtering, we end up with a candidate set Sq of
training examples for each quadrant q ∈ {1, 2, 3, 4}.

Among the training examples left in each quadrant, we
select a small set of k examples that has high magnitude
influence, high proximity to the test instance, and is diverse.
Specifically, we aim for a balance among the three measures:

Eq = arg max
E⊆Sq,|E|=k

∑
z∈E

(α|I(z, zt)|+ βP (z, zt))+γD(E),

where α, β, γ are weighs empirically determined. Similar to
other submodular maximization problems [11], we construct
Eq in a incremental way, each time greedily selecting the
example that maximizes the objective.

4 EXPERIMENTS

4.1 DATASETS AND MODELS

In our experiments, we used two datasets: the SMS Spam
dataset2, which comprises a collection of text messages
labeled as either spam or non-spam (ham), commonly used
for text classification and a derivative dataset with pictures
of dogs and fish extracted from Imagenet3. For the spam
classification task, we employed the BERT-base pre-trained
word embedding model and incorporated two sequential
layers to capture the specific characteristics of our data.
Regarding the image classification task, we utilized a pre-
trained InceptionV3 model removing the output layer and
appending sequential layers to learn the peculiarity of our
task. All the baselines were implemented with instructions
given in their papers and GitHub repositories.

4.2 QUALITATIVE EVALUATION

The baseline methods that we will compare AIDE to are
IF [18], RelatIF [5], Datamodels [15], and TraceIn [9]. We
provide the some anecdotes to compare the informativeness
and understandability qualitatively. Apart from the examples
given in 1, we selected one text and one image sample both
corresponding to an ambiguous prediction. This diverse set
of test cases allowed us to evaluate the performance and ca-
pabilities of AIDE in explaining predictions across different
scenarios and levels of prediction certainty. The similarity
between training examples, which are used for both prox-
imity and diversity, is based on generating embeddings for
images and text and using cosine similarity between the
embeddings.

In the following, we present findings for the intent of clari-
fying an ambiguous prediction. Results for the other intents
are found in the supplementary material.

2https://www.kaggle.com/datasets/uciml/
sms-spam-collection-dataset

3https://www.image-net.org/
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Figure 2: Explanations to clarify an ambiguous prediction
for the test image by baselines and AIDE.

When faced with an ambiguous sample as in Figure 2, where
the image contains both a dog and a fish, understanding why
the model chose a specific class (in this case, a dog) despite
the ground truth being a fish becomes crucial. AIDE’s ex-
planation unveils the underlying logic or rules employed
during the labeling process that the model failed to general-
ize effectively. By examining the supporters, we observe that
the model learns from both dog-related features and water-
related features, which aligns with common sense. However,
the opposers suggest the potential existence of a labeling
rule that associates images containing both dogs and fish
with the “fish” label. This rule may not have been strongly
represented in the training data, leading to the model’s inef-
ficient learning of this specific rule. Unlike other methods
such as ReleatIf and TraceIn, which lack comprehensive ex-
planations, or IF, which is sensitive to outliers, Datamodels
is in stark contrast to AIDE. We observed that when con-
fronted with mislabeled or ambiguous samples, Datamodels
may explain the opposite label prediction rather than the
model’s actual prediction. This happens due to a discordance
between the model being explained and the intermediary
models (of the same class) used to compute the importance
of individual training examples; in fact, about 20% of the
intermediary models predict a different class that the actual
model.

Table 1 shows another ambiguous test sample from of spam
classification. Determining whether this message is spam or
not is challenging since it does not exhibit the typical form
of either a “ham” message or a common spam message.
Instead, it takes the form of an aphorism, which falls into an
ambiguous category of messages. AIDE’s supporters shed
light on the presence of numerous aphorisms in the training
set that are labeled as spam, indicating the existence of a
labeling rule for categorizing such messages as spam during
labeling. Thus, the model can correctly classify this message
despite its ambiguity. The supporting samples provided by
AIDE emphasize a specific rule that was likely injected
during the labeling process, indicating that aphorisms were
considered spam. These supporting samples contributed to
the correct classification decision by reinforcing this rule.
The opposing examples suggest that classifying the message
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Table 1: AIDE for an ambiguous test message.

Test prediction of interest Label

‘Do you realize that in about 40 years, we’ll have thousands of old
ladies running around with tattoos?’

Spam

Supporters

‘Do you ever notice that when you’re driving, anyone going slower
than you is an idiot and everyone driving faster than you is a maniac?’

Spam

‘How come it takes so little time for a child who is afraid of the dark
to become a teenager who wants to stay out all night? ’

Spam

‘LIFE has never been this much fun and great until you came in. You
made it truly special for me. I won’t forget you!’

Spam

Opposers

‘You are always putting your business out there. You put pictures of
your ass on facebook. Why would i think a picture of your room would
hurt you, make you feel violated.’

Ham

‘Yo you guys ever figure out how much we need for alcohol? Jay and I
are trying to figure out how much we can spend on weed’

Ham

‘Any chance you might have had with me evaporated as soon as
you violated my privacy by stealing my phone number from your
employer’s paperwork.’

Ham

as non-spam could be a plausible interpretation.

However, the model’s ability to correctly classify the mes-
sage indicates that the rule regarding aphorisms being classi-
fied as spam is supported by an adequate number of training
samples. This indicates that the model has learned and gen-
eralized this rule effectively.

4.3 QUANTITATIVE EVALUATION

Correctness. In this set of experiments, we follow the con-
trolled synthetic data check protocol of [23]. AIDE pos-
sesses the capability to detect rules employed during the
labeling process while providing explanations for corre-
sponding test samples. For instance, if a rule dictates la-
beling messages shorter than 30 characters with a question
mark as “spam” in the training set, AIDE can identify simi-
lar instances while explaining a test sample with analogous
characteristics. To enhance the robustness of this detection,
we introduce ambiguity by labeling a subset of training sam-
ples adhering to the rule with an opposite label, anticipating
these instances in the “Oppose by” category. Subsequently,
we evaluate the precision of AIDE by counting the retrieved
samples conforming to the rule.

In this experimental setup, three rules were employed. Rule
1: All French messages are “spam”. Initially, there were no
French messages, 110 French messages were added in the
following ratio 88 spam and 22 ham.
Rule 2: if the message is shorter than 30 and it contains “?”,
it’s labeled “spam”. Initially, all 197 such messages were
ham and intervention resulted in 157 spam and 43 ham.
Rule 3: If a message contains a sequence of 4 consecutive
digits, it’s labeled “ham”. Initially, 504 of 512 such samples
were spam and intervention resulted in 398 ham.

Before gauging the precision of the explanation, it is im-
perative to ensure that the model has effectively learned
the rules. Three metrics are employed for this assessment:
1) Accuracy of Learning the Rule: Evaluating the model’s
performance on test samples corresponding to a rule. 2)
Log-Likelihood: Expecting a substantial change in the log-
likelihood of intervened points (LLi) after the introduction
of the rule, while the log-likelihood of untouched points
(LLu) is anticipated to remain relatively stable. 3) Probabil-
ity Scores: Anticipating a notable alteration in the probabil-
ity scores of intervened (Psi), compared to untouched point
(Psu). Table 2 illustrates the results of these metrics. In all
cases, the model demonstrates high accuracy in learning the
rules without impacting its decisions for untouched points.

Acc LLi LLu Psi Psu

Rule 1 0.83 Before -5.87 -9.4 100 15After -0.42 -9.2

Rule 2 0.85 Before -12 -9.3 100 24.5After -3.4 -7.2

Rule 3 0.92 Before -0.07 -10.6 98 12After -1.83 -9.5

Table 2: Model’s assessment in learning the rules

We expect to find rule followers and breakers in the support
and oppose quadrants of AIDE, respectively, which is the
case with high (around 0.9) precision for all rules. We repeat
this experiment, for other baselines, and expect to find rule
followers (resp. breakers) when we look at the training data
with high positive (resp. low negative) influence. Fig. 3
shows that IF and Datamodels perform well but are not
consistent. RelatIF performs poorly in uncovering followers
and breakers, because of its loss-based outlier elimination.
RelatIF treats training data with high loss as outliers, and
excludes them from explanation lists—the rationale is that
such data are global influencers and would appear in all
explanations, thus have little utility. But in this case, it is
precisely the rule followers and particularly the minority of
rule breakers that have high losses due to the ambiguity in
the labeling rule. TraceIn also fails to uncover the rule due
to its low efficiency of identifying truly important samples,
which is also demonstrated by [25].

AIDE IF RelatIF DM TraceIn
Pfol Pbr Pfol Pbr Pfol Pbr Pfol Pbr Pfol Pbr

Rule 1 0.99 0.9 0.93 0.91 0.59 0.25 0.9 0.8 0.22 0.3
Rule 2 0.88 0.8 0.52 0.74 0.22 0.1 0.83 0.48 0.29 0.38
Rule 3 0.9 0.87 0.85 0.86 0.31 0.15 0.76 0.73 0.37 0.31

Table 3: Precision in uncovering rule followers Pfol and
breakers Pbr.

Faithfulness. To assess the quantitative effectiveness of
AIDE, we employ the faithfulness metric, correlating sam-
ple similarity with the concordance of their explanations.
Sample similarity is computed using cosine similarity of
embeddings, and explanation similarity is computed using

Intent ML knowledge Q1 (%) Q2 (%) Q3 (%) Q4 (%) Q5 (%) Q6 (%) Q7 (%)

Int. correct
Advanced 88 94 100 75 - - -

Intermediate 87 87 93 67 - - -

Inv. wrong
Advanced 88 81 88 81 63 63 88

Intermediate 67 66 8 66 80 66 87

Cl. ambiguous
Advanced 69 81 88 - 60 - 69

Intermediate 73 73 80 - 73 - 67

Table 4: Results from the user study per intent
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Figure 3: Faithfulness in terms of explanation similarity vs. instance pair similarity.

Q8 (%) Q9 (%) Q10 (%)
Advanced 88 100 100

Intermediate 80 73 100

Table 5: Overall evaluation of AIDE

Fuzzy Jaccard [26] metric. For each sample prediction, a set
is formed with the indices of training samples returned in
the explanation. Fuzzy Jaccard involves solving a maximum
bipartite matching problem. In spam classification, 100 ran-
dom test samples are chosen. For each, the 10 most similar
and dissimilar samples are identified, resulting in 2000 pairs.
The same procedure is replicated with the image dataset,
commencing with 50 random samples instead of 100, as this
dataset is smaller in scale. The cosine similarity is plotted
against Fuzzy Jaccard along with a linear regression line in
red, and the Pearson correlation coefficient (PCC) for the
spam datasets in Figure 3, the figures for the image dataset
exhibiting the same trend can be found in the supplementary
materials. RelatIF and AIDE perform similarly. In contrast,
IF and Datamodels have a lower PCC and do not exhibit
a clear separation between instance pairs of low and high
similarity. This is because their explanations tend to include
training data outliers that appear in all explanations (glob-
ally influential), and which inflate the explanation similarity
even for dissimilar pairs. Finally, TraceIn performs poorly
and provides identical explanations for dissimilar points,
which is due to its extremely high susceptibility to outliers.
RelatIF and AIDE are more robust because they seek to
eliminate outliers, albeit in different ways (based on loss
and proximity, respectively).

4.4 USER STUDY

Following the recommendations of [30], we invited 33 par-
ticipants with diverse levels of machine learning knowledge
to assess AIDE explanations based on the following criteria:

Mental Model: Q1. The explanation provided helped to
understand the model’s prediction. To what extent do you
agree?
Clarity: Q2. The explanation is clear and easy to compre-
hend. To what extent do you agree?
Usefulness of AIDE Quadrants: Q3, Q4, Q5, Q6. The group
“Support”, “Support by Contrast”, “Oppose”, “Oppose by
Contrast” enhances the understanding of the model’s predic-
tion. To what extent do you agree?
Human-AI Collaboration: Q7. Did the explanation help
understand how the model’s performance can be improved?

Effectiveness: Q8. How would you rate the overall effective-
ness of AIDE in helping to understand model predictions?
Helpfulness: Q9. To what extent did you find the provided
samples relevant to the specific intent you encountered?
Contrastivity: Q10. Do you believe that the use of contrast
in the groups of images shown enhanced your understanding
of the model predictions?

All questions where accompanied by a 5-point Likert scale.
All positive (i.e., strongly agree, somewhat agree) answers
are considered to be in agreement. The metrics collectively
provide a comprehensive qualitative assessment of AIDE’s
performance from the user’s perspective, taking into account
various aspects of interpretability and usability. In Table 4,
the percentage of participants who agreed on the high qual-
ity of specific aspects of AIDEs’ explanation for particular
intents is presented. Whereas, in Table 5, the percentages
of users who overall highly assessed AIDE’s effectiveness,
the utility of contrast in explanation, and AIDE’s capability
to tailor explanations according to user intent are depicted.
A noteworthy observation is that participants with more ad-
vanced expertise tend to rate highly more frequently across
various aspects of AIDE’s explanation.

In our user study we did not explicitly compare with IF
and RelatIF to prevent potential bias in favor of our novel
method. However, the user study implicitly compares AIDE
to IF and RelatIF. Observe that the support quadrant of
AIDE contains explanations very similar to those IF and Re-
latIF produce. Specifically, we implicitly draw conclusions
on the added value of AIDE, through the targeted questions
that assess: (1) the significance of the other three quadrants
(Q4, Q5, Q6), where 63%–81% of participants agree; and
(2) the importance of contrastivity (Q10), where 100% of
the participants agree.

5 CONCLUSION

In this paper, we introduce AIDE, a novel example-based
explainability method that generates diverse and contrastive
explanations tailored to user’s needs and intentions. Through
experiments on text and image datasets, we demonstrate
AIDE’s effectiveness in interpreting model decisions, un-
covering the reasons behind errors, and identifying whether
the model has learned complex and unconventional patterns
present in the training data. Quantitative and qualitative anal-
ysis affirms that AIDE outperforms existing approaches.
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