

Sequence-Aware Recommenders

Recommender Systems

Dimitris Sacharidis

introduction

recommenders in practice

- differ from standard recommenders in three main ways:
 - long-term vs. short-term interests
 - users vs. sessions
 - richer input

long-term vs. short-term interests

- typically recommenders learn **correlations** in a ratings matrix
- by observing user behavior in the past
- that capture the **long-term** user preferences
 - e.g., tastes of users in movies, music
- **assumption**: what people look for is determined by long-term interests
- in practice, this may not necessarily hold
- **short-term** interests may be as important, or more
 - the *intent* of the user
 - e.g., when playing music, what I just listened to matters most

users vs. sessions

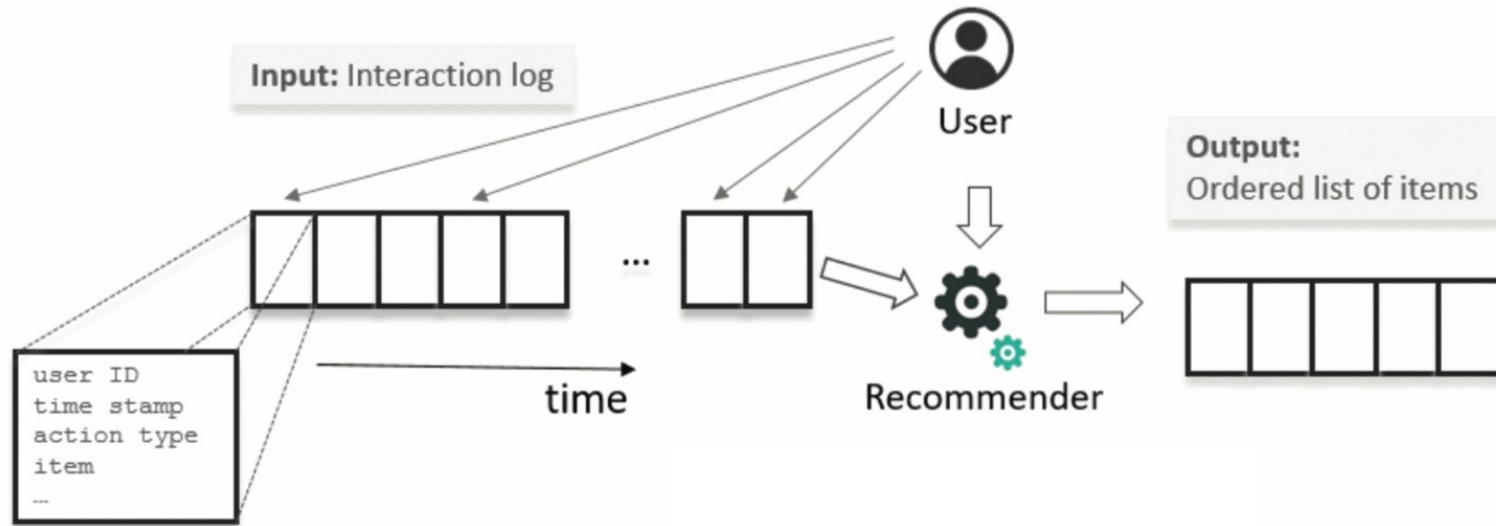
- in some cases, long-term profiling is not possible
- the system may not know of users
 - e.g., users not logging in, just browsing
- system only sees **sessions** of activity
- captures the short-term preferences of the user
- but still needs to make recommendations

richer input

- users give feedback from which the system learns
- originally, **explicit feedback**, e.g., ratings
- then, **implicit feedback**, e.g., purchases
- now, **richer** implicit feedback, e.g., an **interaction log**
 - **multiple actions** possible for an item
 - e.g., item-view, item-purchase, add-to-cart

sequence-aware recommenders

- important distinction:
- input is a **sequence** of actions, the **interaction log**
 - order matters



input

- how much past information is used to make recommendations
- **last-N interactions**
 - sometimes only last interaction
 - e.g., next Point-Of-Interest (POI) recommendation
 - e.g., “customers who bought X also bought”
- **session-based recommender**
 - not aware of users; e.g., not logged-in, anonymous
 - *short-term* interest
- **session-aware recommender**
 - past sessions of users are known; e.g., logged-in, cookies
 - *short-term* and *long-term* interest

output

- ordered list of items, with different interpretation
- **alternatives**; e.g., other hotels
- **complements**; e.g., accessories to an item
- **continuations**
 - with restrictions on order: e.g., course prerequisites
 - without restrictions on order: e.g., next tracks in an automated playlist

conventional algorithms

U-U CF, I-I CF, Matrix Factorization

conventional methods

- do they apply? sure
- let's simplify a bit:
 - one type of action; e.g., rating, click, purchase
 - order of actions does not matter; set of previous item interactions
- can we handle sessions instead of users?
- yes! treat a **session** like a **user**
- let's revisit conventional methods

user-user CF

- user=session; a session is a set of previously interacted items
- identical to UU CF for implicit feedback
- called **session-based kNN** method in [2017 RecSys]
- shown to outperform more elaborate methods

$$\hat{r}(s, i) = \sum_{s' \in N(s)} w_{s,s'} \cdot \mathbb{1}(i \in s')$$

predicted score of target item to current session

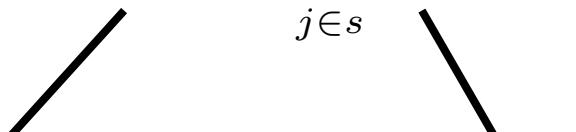
neighborhood of current session

session-session cosine similarity

only consider neighbors that contain target item

item-item CF

- again, user=session
- similarity of items based on the sessions they appear in
 - or learn the weights as in SLIM
- prediction for a target item is the sum of similarities of all current session items
 - or consider only the last session item

$$\hat{r}(s, i) = \sum_{j \in s} w_{i,j}$$


*predicted score
of target item to
current session*

*item-item
similarity*

matrix factorization et al.

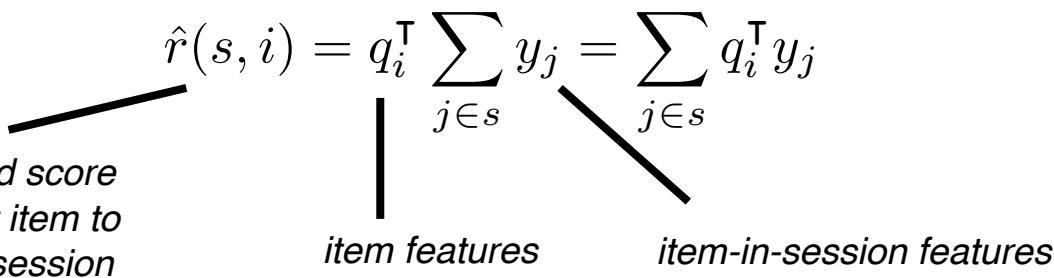
- again, user=session
- one issue, must train for each new session
 - why? must learn the features of current session
- **alternative**: do not explicitly learn features for current session
- instead learn two sets of features for items
 - the q 's and the y 's (just like SVD++)
 - a session is represented by the y 's of the items it contains

$$\hat{r}(s, i) = q_i^T \sum_{j \in s} y_j = \sum_{j \in s} q_i^T y_j$$

predicted score of target item to current session

item features

item-in-session features



sequence-aware algorithms

Markov Processes, Recurrent Neural Networks

Markov Processes

- (a.k.a. Markov chains) describe transitions between **states** of the world
- S_t is the state at time t
- *“the future is independent of the past given the present”*

$$Pr[S_{t+1}|S_1, \dots, S_t] = Pr[S_{t+1}|S_t]$$

- the present state tells you everything you need to know
- throw away history (or carefully encode it into the state!)

Markov Processes

- the world can be fully described by the **state transition probabilities**

$$P_{s,s'} = \Pr[S_{t+1} = s' | S_t = s]$$

*the probability
of moving from
state s to s'*

- these state transition probabilities can be nicely organized in the **state transition matrix**

Markov Processes for Recommendations

- modeling the recommendation problem as an MP
- **state** is the **sequence** of previous user interactions
- typically sequences of length up to k

$$s = (i_1, \dots, i_k)$$

- how many states? too many! m^k (m is the number of items)
 - so k has a small value like 3 or even 1

Markov Processes for Recommendations

- suppose state transition probabilities are known
 - (we come back to this)
- then to recommend:
 - given the **present**, find the most probable next state, the **future**
 - return the **last item** in the future state
- let $s = (i_1, \dots, i_k)$ be the **present state**
- and assume $s' = (i_2, \dots, i_{k+1})$ is the most probable **future state**
- then recommend item i_{k+1}

Markov Processes for Recommendations

- how to learn the state transition probabilities
- via **maximum likelihood estimation**
- which involves **counting** how many times sequences appear in the interaction log
- consider a **from** state $s = (i_1, \dots, i_k)$ and a **to** state $s' = (i_2, \dots, i_{k+1})$
- the transition probability is computed as

$$P_{s,s'} = \frac{\Pr[(i_1, \dots, i_{k+1})]}{\Pr[(i_1, \dots, i_k)]}$$

*how many times we see the transition,
i.e., **join** of the **from** and **to** sequences*

*how many times we see the
from sequence*

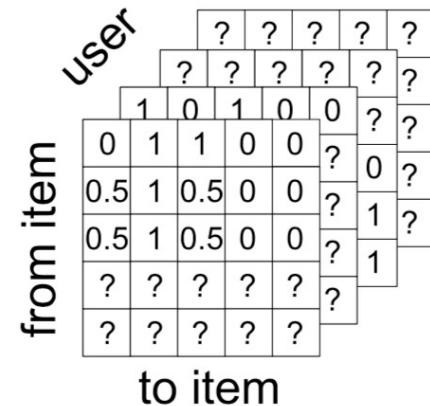
Markov Processes for Recommendations

- sparseness issue: the **state space may be too large** and the **observed transitions too few**
- some ideas:
 - make $k=1$; next item transitions
 - skipping, clustering, mixture; see [2005 JMLR G. Shani et al.]

Markov Processes for Recommendations

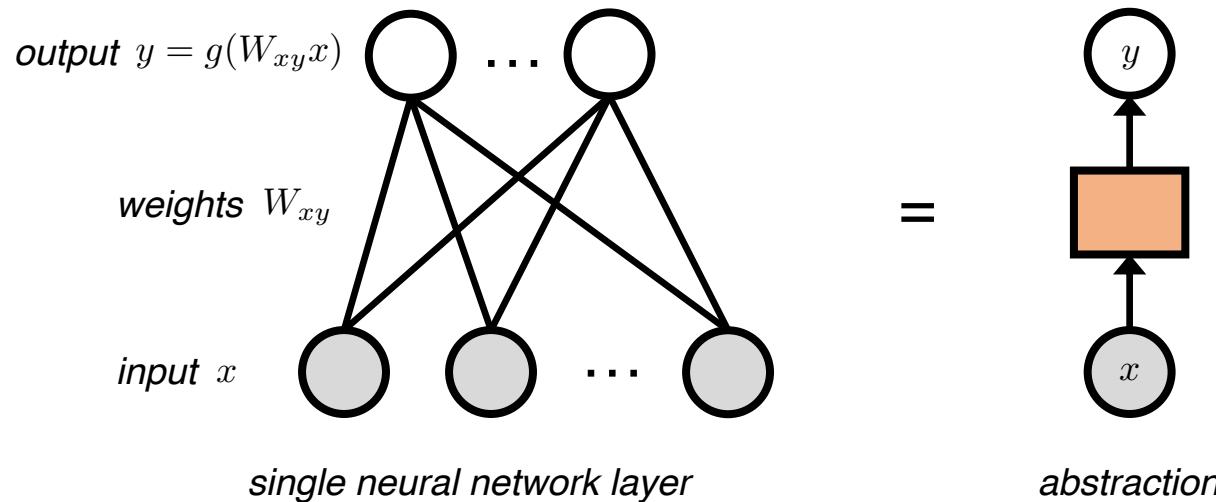
- MPs address **session-based** problem
 - not user personalized
 - what if we have users *and* sessions, the **session-aware** problem
 - transition matrix per user, based on her sessions
 - i.e., a transition **cube**: from-item, to-item, user
 - the cube is even more sparse!
 - but we can **factorize** the cube to exploit correlations across its dimensions

The diagram illustrates a 3D transition cube for session-aware recommendation. The cube is labeled with 'user' on the vertical axis, 'from item' on the horizontal axis, and 'to item' on the depth axis. The data is represented by a grid of numbers and question marks. The first row (user) contains question marks. The second row (user) contains values 1, 0, 1. The third row (user) contains values 0.5, 1, 0.5, 0. The fourth row (user) contains values 0.5, 1, 0.5, 0. The fifth row (user) contains question marks. The sixth row (user) contains question marks. The seventh row (user) contains question marks. The eighth row (user) contains question marks.



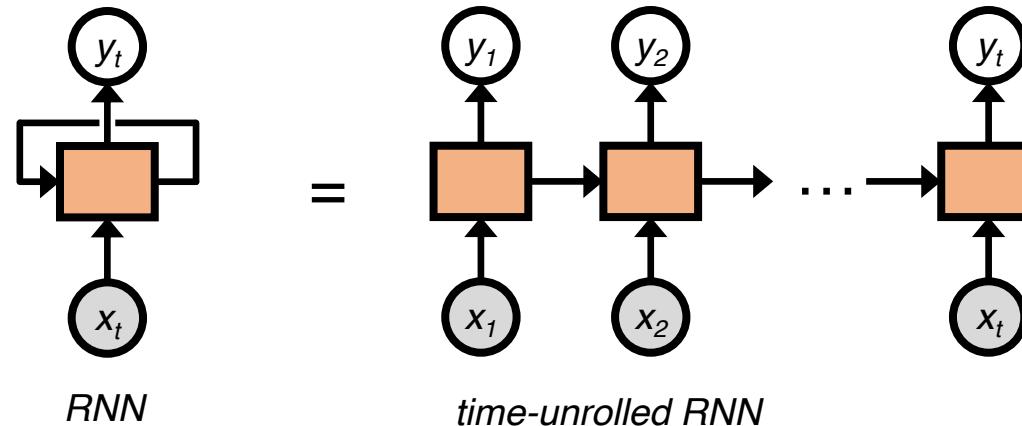
from Neural Networks ...

- an NN layer transforms an **input** vector x to an **output** vector y
- two ingredients:
 - nonlinear function (e.g., tanh, ReLU): $g()$
 - weight matrix: W_{xy}



... to Recurrent Neural Networks

- can transform a **sequence** of vectors to a **sequence** of vectors
- RNNs have a hidden state that controls its output
 - a feedback loop
- different flavors: basic RNN, LSTM, GRU



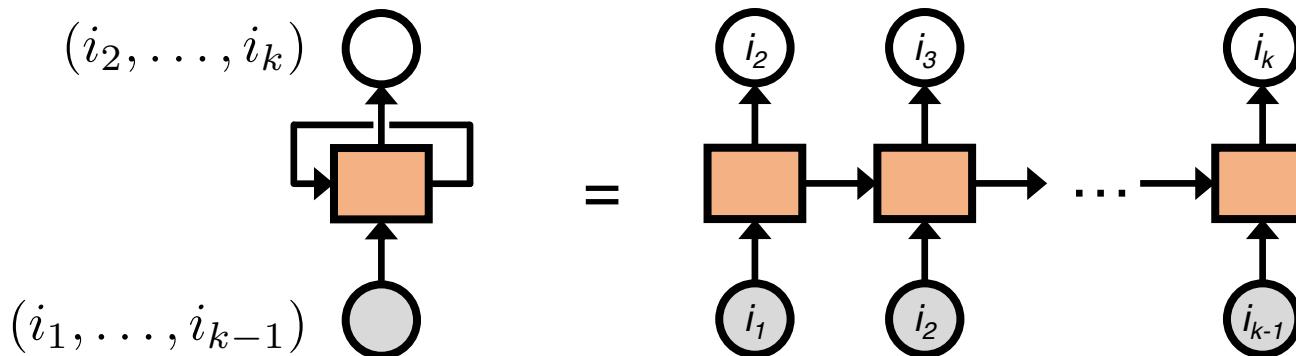
<http://karpathy.github.io/2015/05/21/rnn-effectiveness/>

<http://colah.github.io/posts/2015-08-Understanding-LSTMs/>

RNNs for Recommendations

for training:

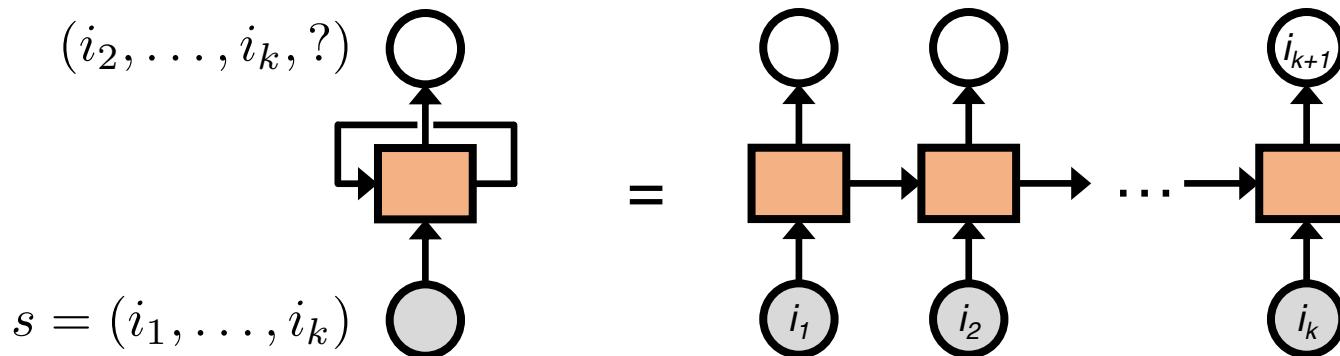
- feed a session to the RNN $s = (i_1, \dots, i_k)$
- at each step, we want the output to be the next item



RNNs for Recommendations

to recommend:

- feed the **current session**
- look at the **last output**, to select the next item



RNNs for Recommendations

- not always better than conventional algorithms [2017 RecSys]
- combining them brings benefits