Seqguence-Aware
Recommenders

Recommender Systems

Dimitris Sacharidis

INtroduction

recommenders in practice

« differ from standard recommenders in three main ways:
* long-term vs. short-term interests
* USers vs. sessions
* richer input

long-term vs. short-term interests

« typically recommenders learn correlations in a ratings matrix

* by observing user behavior in the past

* that capture the long-term user preferences
* e.g., tastes of users in movies, music

« assumption: what people look for is determined by long-term
interests

* in practice, this may not necessarily hold

» short-term interests may be as important, or more

* the intent of the user
* e.g., when playing music, what | just listened to matters most

USEers VS. Sessions

* in some cases, long-term profiling is not possible

* the system may not know of users
* e.g., users not logging in, just browsing

 system only sees sessions of activity
« captures the short-term preferences of the user
* but still needs to make recommendations

richer input

* users give feedback from which the system learns
» originally, explicit feedback, e.g., ratings
* then, implicit feedback, e.g., purchases

* now, richer implicit feedback, e.g., an interaction log

« multiple actions possible for an item
 e.g., item-view, item-purchase, add-to-cart

seguence-aware recommenders

* important distinction:

* input is a sequence of actions, the interaction log
« order matters

Input: Interaction log @

User
Output:

Ordered list of items

¢
%ﬁ{}[>

Elite i time Recommender

[2018 ACM Comp. Surveys M. Quadrana et al.] Sequence-Aware Recommender Systems

INput
* how much past information is used to make recommendations

* last-N interactions
« sometimes only last interaction
* e.g., next Point-Of-Interest (POI) recommendation
* e.g., “customers who bought X also bought”

» session-based recommender
* not aware of users; e.g., not logged-in, anonymous
* Short-term interest

« session-aware recommender
* past sessions of users are known; e.g., logged-in, cookies
 Short-term and long-term interest

output

« ordered list of items, with different interpretation

- alternatives; e.g., other hotels
« complements; e.g., accessories to an item

 continuations
« with restrictions on order: e.g., course prerequisites
 without restrictions on order: e.g., next tracks in an automated playlist

conventional algorithms

U-U CF, |-l CF, Matrix Factorization

conventional methods

» do they apply? sure

* let’s simplify a bit:
* one type of action; e.g., rating, click, purchase
« order of actions does not matter; set of previous item interactions

« can we handle sessions instead of users?

* yes! treat a session like a user
* let’s revisit conventional methods

user-user CF

* uUser=session; a session is a set of previously interacted items

« identical to UU CF for implicit feedback
- called session-based kNN method in [2017 RecSys]

« shown to outperform more elaborate methods

r(s,1) = -1(7
/ s’€N(s) \\
predicted score /

of target item to neighborhood of session-session only consider neighbors
current session current session cosine similarity that contain target item

[2017 RecSys D. Jannach, M. Ludewig] When Recurrent Neural Networks meet the Neighborhood for Session-Based Recommendation

item-item CF

* again, user=session
* similarity of items based on the sessions they appear in
* or learn the weights as in SLIM

« prediction for a target item is the sum of similarities of all current
session items
 or consider only the last session item

72(8, Z) = Z wm

/N

predicted score item-item
of target item to similarity
current session

matrix factorization et al.

* again, user=session

 One issue, must train for each new session
« why? must learn the features of current session

- alternative: do not explicitly learn features for current session

 instead learn two sets of features for items

* the @’s and the y’s (just like SVD++)
 a session is represented by the y’s of the items it contains

Pls,i)=ql > yi =) aly

predicted score
of target item to _ _ _ _
item features item-in-session features

current session

seguence-aware algorithms

Markov Processes, Recurrent Neural Networks

Markov Processes

* (a.k.a. Markov chains) describe transitions between states of the
world

« S;is the state at time t
* “the future is independent of the past given the present”

Pr(Si+1]51, ..., St] = Pr[Si41|St]

future past present

* the present state tells you everything you need to know
 throw away history (or carefully encode it into the state!)

Markov Processes

* the world can be fully described by the state transition
probabilities

Ps,s’ = PT[St_|_1 = S/|St — S]

the probability
of moving from
state sto s'

* these state transition probabilities can be nicely organized in the
state transition matrix

Markov Processes for Recommendations

* modeling the recommendation problem as an MP

- state is the sequence of previous user interactions
» typically sequences of length up to k

SZ(il,...,ik)

« how many states? too many! m* (m is the number of items)
* SO k has a small value like 3 or even 1

Markov Processes for Recommendations

* suppose state transition probabilities are known
» (we come back to this)

* then to recommend:
* given the present, find the most probable next state, the future
e return the last item in the future state

* let s = (i1,...,1x) be the present state
. and assume s’ = (i2,...,ik+1) is the most probable future state
 then recommend item %x+1

Markov Processes for Recommendations

* how to learn the state transition probabilities

* via maximum likelihood estimation

* which involves counting how many times sequences appear in
the interaction log

« consider a from state s = (i1,...,i;) and a to state s’ = (is,..., 054 1)
* the transition probability is computes as

how many times we see the transition,

. . / i.e., join of the from and to sequences
_ Pr{(in, .- i)

Ps,s’ — . .
Pr{(it,... ,Zk)]\ how many times we see the

from sequence

Markov Processes for Recommendations

* sparseness issue: the state space may be too large and the
observed transitions too few

e Some ideas:
 make k=1:; next item transitions
« skipping, clustering, mixture; see [2005 JMLR G. Shani et al.]

[2005 JMLR G. Shani et al.] An MDP-Based Recommender System

Markov Processes for Recommendations

 MPs address session-based problem
* not user personalized

. . & [2]2]2]2]2
« what if we have users and sessions, the ¥ [2 1‘? 1l?]l? [2 15
AN [11al1lalo 5T
session-aware problem = [0]1]1]0]0 ”_%Z—
- transition matrix per user, based on her sessions @ [0.510.50 05—
. . _ _ 0.5/ 1/0.5 0|0 [5 -+

* j.e., a transition cube: from-item, to-item, user g 20222 m

= 21222
to item

 the cube is even more sparse!

 but we can factorize the cube to exploit correlations across its
dimensions

[2010 WWW S. Rendle et al.] Factorizing Personalized Markov Chains for Next-Basket Recommendation

from Neural Networks ...

« an NN layer transforms an input vector x to an output vector y

* two ingredients:
 nonlinear function (e.g., tanh, RelLU): g()
* weight matrix: W,

output y = g(Wayx)

weights W,

input x

single neural network layer abstraction

... to Recurrent Neural Networks

« can transform a sequence of vectors to a sequence of vectors

 RNNs have a hidden state that controls its output
- a feedback loop

« different flavors: basic RNN, LSTM, GRU

time-unrolled RNN

htip://karpathy.qithub.io/2015/05/21/rnn-effectiveness/
htto://colah.qithub.io/posts/2015-08-Understanding-LSTMs/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

RNNs for Recommendations

for training:
- feed a session to the RNN s = (i1, -, i)
« at each step, we want the output to be the next item

(inr. i) O C o
- - -
(i1, ..+, ip_1) OO ®

[2016 ICLR B. Hidasi et al.] Session-based Recommendations with Recurrent Neural Networks

RNNs for Recommendations

to recommend:
» feed the current session
* look at the last output, to select the next item

(i2,..., 0%, 7) ®
= I
S:(’il,...,ik) @

[2016 ICLR B. Hidasi et al.] Session-based Recommendations with Recurrent Neural Networks

RNNs for Recommendations

* not always better than conventional algorithms [2017 RecSys]
« combining them brings benefits

[2017 RecSys D. Jannach, M. Ludewig] When Recurrent Neural Networks meet the Neighborhood for Session-Based Recommendation

