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Abstract—We study the data sparsity problem for data gen-
erated from an integration system. We approach the problem
from a textual information extraction perspective and propose
to conceptualize external documents using the concepts in the
integrated schema. We present THOR, a novel system that, unlike
related approaches, neither relies on complex rules nor models
trained with large annotated corpus, but on the integrated data
and its schema without the need for human annotations. An ex-
tensive evaluation on the text conceptualization task demonstrates
the superiority of our approach in terms of F1-score, effort and
use of resources over the state-of-the-art language models.

Index Terms—Data Integration, Information Extraction, Entity
Recognition, Slot-filling

I. INTRODUCTION

Data has always been an asset. Collecting, storing and
integrating the available wealth of internal and external data
enables significant improvements to the analytical capabilities
of organizations. Data integration focuses on providing a
unified view of data over a set of disparate and heterogeneous
sources [1], and typically combines the underlying datasets
with operators that allow for partial matches, such as outer
join [2] or full disjunction [3]. The consequence, however,
is the generation of a large number of missing values (a.k.a.
labeled nulls, denoted by ⊥), which are reported to account
for 15% of the values [4], since each data source captures
a different set of instances (particularly, if these datasets
have been independently generated). Further, each data source
provides a partial view of the data of interest, thus even
after combining them the resulting integrated data presents an
incomplete view. This is commonly referred to in the literature
as the data sparsity problem [5] [6].

Missing value imputation is a very common data clean-
ing technique in the data integration pipeline to enhance
data quality [7]. Focusing on repairing structured data, such
cleaning approaches can be categorized into constraint-based
and learning-based ones. Systems in the former category
(e.g., LLUNATIC [8], NADEEF [9], or HORIZON [10]), aim
to model and enforce data dependencies or business rules
modeled as denial constraints [11]. Alternatively, those in the
latter (e.g., HoloClean [12], Baran [13], or Garf [14]), automat-
ically generate data repairs leveraging pre-trained probabilistic
models or models trained from the available structured data.
Despite their effectiveness, the approaches above are limited to
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Fig. 1. An example illustrating the data sparsity problem and our solution
through text conceptualization: missing values (⊥) regarding ‘Complication’,
and additional ‘Anatomy’ information for ‘Acoustic Neuroma’ are filled from
the conceptualized text. Our approach leverages the knowledge embedded
within unstructured text to enhance the completeness of integrated data.

the available structured sources to learn and compute repairs.
However, as reported, a significant portion of data organiza-
tions hold resides in texts [15], which is largely unused. Hence,
we approach the missing value imputation problem from a
different perspective, and aim to impute missing values over
structured data leveraging on textual data.

Fig. 1, exemplifies the scenario we address in the context
of health-related data integration. Here, both datasets to be
integrated (i.e., D1 and D2) contain the concept ‘Disease’,
but the instances available in each data source are different,
thus, when combined, they generate a considerable number
of missing values. However, upon the absence of relevant
structured data to learn and compute repairs, we can resort
to textual data such as that presented in the bottom of Fig.
1. The sample text can be used to enrich the integrated data
by filling in the missing values (e.g., ‘Complications’ related
to ‘Acoustic Neuroma’) but also to complete partial data (e.g.,
‘Anatomies’ related to ‘Acoustic Neuroma’).

The idea of enhancing data cleaning methods with external
information has already been adopted in systems such as
KATARA [16], using knowledge bases and crowdsourcing, or
Cleenex [17], that leverages user feedback to define an iterative
process. Yet, to the best of our knowledge no missing value
imputation solution exists that exploits raw textual data (i.e.,
without annotations). On the one hand, the data management
community has proposed several information extraction tech-



niques [18], aiming to extract relational views from textual
sources. However, the generation of structured views from
textual data is limited to those extraction rules that can be
defined over the text [19]. On the other hand, the natural
language processing (NLP) community, has proposed text
conceptualization approaches [20], which aim to automatically
label text portions with a label. State of the art techniques
for text conceptualization include (a) Transformer-based Lan-
guage Models (LMs) to perform Entity Recognition (ER)
from text, and (b) zero-shot approaches with Large Language
Models (LLMs). However, the former require domain-specific
large annotated data with rich context [21]. At the same time,
they also need to be re-annotated and re-trained when the
reference schema changes, while they also suffer from bias to-
wards the most frequent entity, inconsistent performance, and
demand vast resources to be trained (see Section II). In such
a data integration setting, LMs perform poorly when trained
with structured data only [22], as we experimentally validate
in Section VI. The latter approaches, despite their massive
popularity, often fail due to their uncertainty and tendency
to hallucinate [23], [24]. LLMs struggle to maintain recall
and precision when prompted with large text and complex
concept categories [25]. Because of their attention mechanism,
they often overlook fine-grained instances in the text, which
are crucial for IE (see for instance a prompt to ChatGPT1).
Furthermore, resource-wise, it is not feasible to train or fine-
tune an LLM like GPT-4 on a case-by-case basis, a situation
that often pertains to organizations typically dealing with their
own data for integration purposes [26].

Our Proposal. In sight of the limitations of the current
approaches, we present THOR2 (Text Homogenization from
Oblivion to Reality), a novel approach that formulates the
data sparsity problem for qualitative data as an Entity-Centric
Slot-Filling task [27], [28]. This is a text conceptualization
task that involves extracting specific entities from large text
corpora and mapping them into predefined concept categories.
THOR uses the integrated schema concepts as the predefined
concepts for the slot-filling task, and the structured data
instances as patterns to identify entities from text. Specifically,
THOR uses syntactic and semantic textual similarity measures
to decompose sentences into chunks and identify entities.
Then, entities are labeled with regard to the reference schema
concepts via a fine-tuned similarity matcher. Unlike LMs,
THOR only uses the non-contextual structured data sources
and requires no further training. Thus, the cost-effort of our
approach is dramatically smaller both in the training effort,
since we bypass the need for large-scale annotated data, and
the computational cost. Further, it easily adapts when the
reference data integration schema evolves and adapts to the
dynamic and evolving data integration scenario. As result,
THOR’s proposal lies in between two worlds, since it applies
NLP techniques over structured data (considering both schema
and instances, which lead the process) and textual data.

1ChatGPT Demo: https://bit.ly/ChatGPT-Demo
2Code & Artifacts: https://github.com/dtim-upc/THOR

The contributions of this paper are summarized as follows:

• We introduce a lightweight yet powerful approach for miti-
gating data sparsity by slot-filling the integrated data using
conceptualized entities from external texts.

• While traditional imputation methods predominantly con-
centrate on categorical, numeric, or quantitative data; our
contribution is focused on mitigating multi-valued qualita-
tive data sparsity by extracting dispersed information regard-
ing a specific entity from multiple text documents (entity-
centric), enhancing the overall quality and completeness of
integrated data.

• Our method significantly outperforms state-of-the-art
(Large) Language Models in text conceptualization, particu-
larly in entity recognition tasks, for data integration settings.
Additionally, it offers the flexibility to be tuned for either
precision or recall, based on user preferences.

• Compared to methods that necessitate the human annotation
process, our approach showcases substantial reductions in
time, resource consumption, and effort, highlighting its
practicality for real-world applications.

II. RELATED WORK

Recent advances in data science have enabled novel data
integration techniques that extract and integrate information
from diverse data sources on a large scale [29]. Despite being a
well-researched area in data engineering, the task of mitigating
incomplete data during data integration is often overlooked due
to its inherent challenges [30]. To tackle this problem, we can
apply existing techniques to extract, organize and enrich [31]
structured information from unstructured or semi-structured
data. We identify three trends that suit this paper’s objective
to mitigate data sparsity for integrated data: statistical data
imputation, entity-recognition techniques, and slot-filling.

A. Statistical Data Imputation

Most conventional techniques [32] to impute data rely on
statistical measures such as mean substitution, frequent cate-
gory (mode) imputation, and maximum likelihood estimates;
they are predominantly focused on either categorical, numeric,
or quantitative data [33], [34]. Although most techniques
perform quite well for numeric data [35], [36], their perfor-
mance decreases for qualitative data [37]. From a statistical
point of view, data imputation in data integration scenarios
is more challenging than data imputation in single-database
scenarios [30], since traditional statistical techniques do not
deal with the heteroscedasticity (i.e., variance inconsistency)
and non-independent and identically distributed (i.e., Non-
IID) nature of data integrated from different sources [38].
As a consequence, a common practice is to simply ignore
missing values [39]. Methods that try to mitigate qualitative
missing values are either too limited in the sense that they only
consider a fixed number of variables [40] or heavily dependent
on domain-specific large datasets [37].

https://bit.ly/ChatGPT-Demo
https://github.com/dtim-upc/THOR


B. Entity Recognition-based techniques

The problem of extracting information from textual data
has been deeply studied in the IE and NLP communities. IE
techniques encompass several tasks, being one of them Entity
Recognition (ER) [41] [42], which intends to identify entities
mentioned in natural language text into pre-defined categories.
Yet, traditional ER techniques involve creating lexicons or
dictionaries containing a list of entities with specific tagging
rules [43]. Although these lexicon and rule-based approaches
are useful on small domains, they often tend to fall short in
scenarios having complex entity types. Developing those rules
also requires strong domain knowledge; hence, these systems
are not generic. Alternatively, machine learning (ML) methods,
such as Support Vector Machines (SVM), Decision Trees, Hid-
den Markov Models (HMM) [44], and Conditional Random
Fields (CRFs) [45]–[47], have also been employed for this
task. These are trained in a supervised fashion using annotated
text samples with entity labels and ad-hoc feature engineering.
However, since these models solely rely on training examples,
they struggle to generalize to new, unseen data.

Most advanced state-of-the-art ER techniques use Neural
Language Models based on Transformer architectures with At-
tention mechanisms (i.e., BERT, XLNet, RoBERTa, T5, GPT,
LlaMA, UniversalNER). LMs exploit contextual information
(i.e., neighboring words) and distributional semantics (words
with similar distributions have similar meanings) [48] via an
unsupervised pre-training phase. Then, they apply a supervised
strategy called Masked Language Modeling (MLM) [49]–[51].
During MLM training, it uses a placeholder or mask, to hide
the entity labels in the annotated data and predict the masked
labels from the neighboring words. These techniques, in the
presence of a large corpus of annotated text, outperforms
previous ER techniques [25], [52]–[56].

Regardless of the technique used, we find two main ap-
proaches when predicting the entity label in an ER technique.
Either identify the label by only considering the text at hand
or the text and a reference schema. The former is a common
practice in the knowledge base (KB) population and enrich-
ment [57]–[62], where they extract information from text in
the form of subject-verb-object relations and use entity linking
[63] techniques to enrich the KB with the extracted subjects
and objects [64]–[69]. These techniques rely on syntactic
categories (e.g., noun phrases) and tend to generate long-tail
entities that require further processing before being used [70].
For this reason, the current trend is to conceptualize entities
in the textual data following a reference schema [71]. State-
of-the-art techniques [72]–[74] can be used in this regard
and convert the information embedded in the text into a
structured representation via conceptualization. This is also
the chosen approach to facilitate the enhancement [61], [75]
and construction [76]–[80] of structured knowledge sources.

C. Slot-Filling

Slot-Filling [81] [82] [83] is a well-known technique that
can be used to reduce data sparsity via conceptualized text.
Slot filling involves populating entity-specific templates (e.g.,

[Acoustic Neuroma, causes, <slot>]) with information ex-
tracted from text. It can be either document-centric, focusing
on entities represented by a single document, or entity-centric,
where information about a concept is spread across multiple
documents in a corpus. Most advanced slot-filling techniques,
essentially, follow the same principles as LM-based techniques
for ER and suffer from the same problems: (i) the need for a
domain-specific large annotated data with rich context, (ii) the
need to re-annotate and re-train when the reference schema
changes, (iii) bias towards the most frequent entity type, (iv)
inconsistent performance and hallucination and (v) resource-
hungry training. Unfortunately, these assumptions do not hold
in data integration. Although there is available data to work
on, these are primarily structured with limited context (e.g.
tabular data), making it difficult for LMs to work properly.
Also, despite organizations have lots of textual data, those
are not annotated. In the absence of these requirements, the
performance of LMs quickly decreases [84]. Further, in a
data integration system, the integrated schema evolves, which
would require re-annotating the corpus and re-training the
model. Indeed, adapting these methods in the presence of
structured data, which by definition have limited context, is
nowadays an open research area [85]–[87]. Alternatively, zero-
shot Large Language Models such as GPT [88], despite their
massive popularity, are unsuited here due to their unpredictable
nature [23], inconsistent performance [24] and tendency to
hallucinate [89]. LLMs also struggle to maintain recall and
precision with large text corpora in the presence of complex
concept categories [25]. Furthermore, it is not feasible in terms
of resources (i.e., compute power and time) to train or fine-
tune a large model like GPT on a case-by-case basis [26].

D. Research Gap

In order to overcome the limitation of the related work
to mitigate incomplete data over an integrated system using
textual data, THOR proposes a novel Entity-Centric Slot-
Filling strategy where incomplete information is extracted via
conceptualization with regard to the concepts defined within
the data integration system. THOR’s distinguishing feature is
its lightweight (resources-wise) approach that does not require
any annotated text for training; instead, it leverages existing
structured data to reduce data sparsity for qualitative data.
In these settings, THOR outperforms both traditional and
advanced LM-based approaches, as shown in Section V.

III. PROBLEM STATEMENT

In this section, we introduce the formal background of our
approach and state the problem definition. Table I summarizes
the notation used throughout the paper.

A. Preliminaries

Concept. A concept C represents an idea, category, or class of
things. A concept has instances. For example, ‘Tuberculosis’
and ‘Acne’ are instances of the ‘Disease’ concept. We denote
a concept instance as c, and use dom(C) to denote the domain
of concept C (i.e., the set of all possible instances of C).



TABLE I
NOTATION’S USED IN OUR PAPER

Symbol Meaning

C; C∗ a concept; the subject concept
c; c∗ an instance; a subject
C the set of concepts acting as a schema
R; R.C a table; the column corresponding to concept C
r; r.C a row; the values (instances) in column C
s a sentence
p a phrase
e; e.p; e.C an entity; the entity phrase; the entity concept

Table. We consider a concept-oriented schema, defined as a
collection of concepts C, among which one concept, termed
the subject concept C∗ ∈ C plays the role of the primary key.
We assume a relational table R that adheres to the schema C.
Since the columns of R correspond to the concepts C, we use
the terms column and concept interchangeably.

We denote a row of table R as r, and use r.C to refer to the
value(s) of the row for concept C ∈ C. Every row has a single
value for the subject concept, while it can be multi-valued for
the other concepts. We denote as R.C the set of all values in
column C of table R; these values are concept instances, i.e.,
belong to dom(C).

Document. A document D is a collection of sentences. A
sentence s is a sequence of words. A phrase p is a subsequence
of a sentence. A noun phrase is a special phrase that contains a
noun (or a pronoun) and associated modifiers (e.g., adjectives,
determiners, or other qualifying words). Noun phrases often
serve as subjects, objects, or complements within a sentence.
For example, in sentence ‘Tuberculosis generally damages the
lungs’, ‘Tuberculosis’ and ‘the lungs’ are noun phrases.

Entity. A conceptualized entity, or simply an entity e is a
phrase that is associated with a concept, i.e., a pair ⟨p, C⟩,
where p ∈ dom(C). For instance, ⟨‘Tuberculosis’, ‘Disease’⟩
is an entity extracted from the sentence ‘Tuberculosis generally
damages the lungs’. Entities typically consist of noun phrases
(or subsequences thereof).

B. Problem Definition

Problem 1: Given a table R that follows the concept-
oriented schema C, and a document D, the goal is to identify
entities from D and use them to enrich R.

IV. THE THOR PIPELINE

In this section, we describe the THOR pipeline, which
addresses Problem 1. Specifically, it receives as input a table
R with its concept-oriented schema C, and a document D,
and outputs an enriched version of R that is populated with
entities derived from D.

Figure 2 presents a visual depiction of the THOR pipeline,
while Algorithm 1 describes it in pseudocode. The THOR
pipeline consists of three phases, 1 Preparation, 2 Entity
Extraction, and 3 Slot Filling, which are described in the
following subsections. Briefly, Phase 1 performs two tasks, it
(a) segments the document into sentences and determines the
subject instance per sentence, and (b) fine-tunes a semantic

matcher based on the concepts and their instances. Phase
2 extracts (conceptualized) entities from the document D

considering both the semantic and syntactic similarity of
entities to concept instances. Phase 3 uses the extracted
entities to fill slots in (i.e., enrich) table R.

Algorithm 1: THOR

Input: Table R, schema C, document D, threshold τ
Output: Enriched Table R′

1 Preparation
1 {⟨c∗, s⟩} ← SEGMENT(D, R.C∗)
2 MATCHER.FINETUNE(C, R, τ )

2 Entity Extraction
3 foreach c∗ ∈ R.C∗ do
4 E[c∗]← ∅ ▷ Initialize extracted entities per subject instance
5 foreach ⟨c∗, s⟩ ∈ {⟨c∗, s⟩} do
6 {p} ← PARSER.EXTRACTNOUNPHRASES(s)
7 foreach p ∈ {p} do
8 {(e, cm)} ← MATCHER.MATCH(p) ▷ Candidate entities for p
9 foreach (e, cm) ∈ {(e, cm)} do

10 e.scores ← MATCHER.SIMILARITY(e.p, cm)
11 e.scorew ← JACCARD(e.p, cm)
12 e.scorec ← GESTALT(e.p, cm)
13 e.score← (e.scores + e.scorew + e.scorec)/3
14 ebest ← argmax{e}{e.score} ▷ Best candidate entity for p
15 E[c∗]← E[c∗] ∪ {ebest}

3 Slot Filling
16 foreach c∗ ∈ R.C∗ do
17 r ← SELECTIONC∗=c∗ (R) ▷ Select row with key c∗

18 foreach e ∈ E[c∗] do ▷ For each entity related to c∗

19 C ← e.C ▷ Get concept associated with the entity
20 r.C ← r.C ∪ {e.p} ▷ Add phrase e.p to column C of r

A. Preparation

Phase 1 (lines 1–2 in Algorithm 1) involves the segmenta-
tion of the document and fine-tuning of the semantic matcher.
Document Segmentation. The goal of segmentation is to
split the given document into sentences and associate each
sentence with an instance of the subject concept (or with none
if the sentence is not related to the subject concept). In our
running example (Figure 1), ‘Disease’ is the subject concept,
and the document contains three sentences, among which the
first two relate to instance ‘Acoustic Neuroma’, and the last
to instance ‘Tuberculosis’. Segmentation is typically an easy
task, as paragraphs, or even entire documents, often talk about
a specific subject instance. If that is not the case, we employ
semantic matching-based techniques (see Section IV-B) to
classify a sentence into one of the predefined subject instances.
Line 1 in Algorithm 1 corresponds to the segmentation task,
and shows that the input is the document D and the set R.C∗

of all subject instances, and that the output is a set of ⟨subject
instance, sentence⟩ pairs, represented as ⟨c∗, s⟩.
Fine-Tuning a Semantic Matcher. Semantics refers to the
meaning of natural language expressions such as words,
phrases, and sentences, [90], [91]. Semantic similarity match-
ing is the NLP task of deciding how similar the meaning of
two phrases are. THOR applies semantic similarity matching
to identify candidate entities that can enrich a given table.
Specifically, THOR employs a generic semantic similarity
matcher3 built on top of the popular spaCy NLP library, and

3https://github.com/gandersen101/spaczz#SimilarityMatcher

https://github.com/gandersen101/spaczz#SimilarityMatcher
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Fig. 2. The THOR Pipeline.

fine-tunes it for the domain at hand, as represented by the
concepts and their instances.

Internally, the matcher uses pre-trained word embeddings
[92], hereafter simply called vectors, for the English language
(trained on the OntoNotes 5.0 [93] and Wikipedia [94] corpora)
to determine the semantic similarity of two given words. The
goal of fine-tuning the matcher is to associate each concept
C with a set of representative vectors that semantically cover
the domain of C, in the sense that the vector of an unknown
instance of C should be similar to one of these representative
vectors. To achieve this for C, we include as representative
vectors for C the embeddings of the known instances of C
(i.e., those in R.C), acting as seeds, and also include other
vectors that are highly similar to the seeds (i.e., beyond a user-
defined threshold τ ). Together they form the representative
instances that includes both known instances and unknown
instances. By setting the τ , we can choose to be more restric-
tive (precision-oriented) or more inclusive (recall-oriented).

This fine-tuning process, depicted in Line 2 of Algorithm 1,
allows THOR to achieve domain adaptation via weak su-
pervision as we do not use any annotated training data, in
contrast to other approaches (e.g., [67], [68]) that require
either a large set of rules or a large domain-specific training
dataset. The following table illustrates the fine-tuning process,
using the concepts and instances in the table of Figure 1. For
the concept ‘Anatomy’, a known instance is ‘nervous system’
(shown underlined), which acting as a seed returns additional
representative words, such as ‘brain’ and ‘nerve’, that are
associated with ‘Anatomy’. Similarly, the table depicts the seed
and other representative words associated with ‘Complication’.

Concept Representative Instances

‘Anatomy’ {. . . , ‘nervous system’, ‘brain’, ‘nerve’, . . . }
‘Complication’ {. . . , ‘skin cancer’, ‘cancer’, ‘tumor’, . . . }

B. Entity Extraction

Phase 2 (lines 3–15 in Algorithm 1) considers each subject
instance, sentence pair ⟨c∗, s⟩ resulting from the document
segmentation of the previous phase, and produces a set of
entities extracted from s. These are stored in a map structure
E[c∗] that associates a subject instance c∗ with all related
extracted entities, and which is initialized in lines 3–4. The

Tuberculosis         generally     damages    the       lungs

nsubj

advmod det

obj

PROPN ADV VERB DET    NOUN

root

Fig. 3. Example of a dependency parse tree.

phase involves parsing the sentence into phrases, and applying
semantic matching and syntactic refinement over them.

Sentence Parsing. To identify relevant entities from the text,
THOR first exploits linguistic properties. Specifically, it ana-
lyzes the structure of the sentence in terms of the grammatical
relations among words and phrases, a process known as
dependency parsing [76]. Figure 3 depicts the parser’s output
given an input sentence from our running example. The parser
yields a tree consisting of directed edges between words. Each
edge represents the thematic role between two words. Thus,
the parser produces a set of binary relations. For example,
the root verb ‘damages’ is related to the word ‘Tuberculosis’
having the role nominal subject (nsubj) and with the word
‘lungs’ through the object (obj) thematic role. Thematic roles
can help determine subject-verb-object relations in a sentence
[68]. In addition to thematic roles, the parser performs part-of-
speech tagging, associating with each word their grammatical
function (e.g., VERB, ADJECTIVE, NOUN).

THOR uses the dependency parse tree to extract noun
phrases. A noun phrase is a subtree that has at its root a
noun (NOUN), pronoun (PRON), or proper noun (PROPN),
and might also include leading or trailing modifiers, such as
adjectives (ADJ) and determiners (DET) [95]. For instance, in
Figure 3, ‘the lungs’ is a noun phrase having the noun ‘lungs’
at its root. THOR strips from noun phrases any leading or
trailing stop-words (such as a, of, the). Given a sentence s,
the parser outputs a set {p} of phrases, as indicated in line 6
of Algorithm 1. Continuing the running example, THOR will
generate the set of phrases {‘Tuberculosis’, ‘lungs’} from the
sentence depicted in Figure 3.

Semantic Matching and Syntactic Refinement. Once the
phrases have been generated, THOR iterates over each phrase
p (lines 7–15). Given p, THOR performs (a) semantic match-
ing, i.e., extracts candidate entities from p (line 8), and



(b) syntactic refinement, i.e., assesses entities with different
criteria (lines 9–13) and selects the best (lines 14–15).
Semantic Matching. The output of semantic matching is a
collection of candidate entities {e} extracted from p. A can-
didate entity e concerns a subphrase of p, denoted as e.p,
and is associated with a concept, denoted as e.C. Recall
from Section IV-A that the matcher is fine-tuned so that
each concept is associated with a set of representative vectors
(which are the embeddings of instances from the table and
similar words from the vectors). Essentially, the collection of
representative vectors of a concept C acts as a cluster.

Semantic matching, depicted in line 8 of Algorithm 1, works
as follows. The matcher generates all subphrases from p. Each
subphrase, denoted as e.p, is embedded and is represented as
a query vector. By computing the mean pairwise similarity
between the query vector and the representative vectors of
each concept/cluster, the matcher identifies the concept e.C
that semantically best fits the subphrase e.p. In addition, the
matcher determines the concept instance cm of e.C that has
the highest semantic similarity to e.p; this matched instance
cm is later used to assess the quality of the extracted entity.

As an example, consider the noun phrase ‘slow-growing
non-cancerous brain tumor’, from the document in Figure 1.
Semantic matching generates all its subphrases and investi-
gates if they can form entities, i.e., if they are highly similar
to representative words of a concept. Suppose, the two entities
shown in the following table are recognized. Subphrase ‘brain’
is mapped to concept ‘Anatomy’ due to its semantic similarity
with seed instance ‘nervous system’. Similarly, ‘non-cancerous
brain tumor’ is matched to ‘Complication’ via ‘skin cancer’.

Entity Phrase (e.p) Concept (e.C) Seed Instance (cm)

e1 ‘brain’ ‘Anatomy’ ‘nervous system’
e2 ‘non-cancerous brain tumor’ ‘Complication’ ‘skin cancer’

Syntactic Refinement. Semantic similarity matching can iden-
tify novel instances (e.g., ‘Malaria’) not seen among the
known instances of a concept (e.g., ‘Disease’). However, when
concepts have instances that are similar across concepts (e.g.,
‘blood’ is an ‘Anatomy’, while ‘blood clot’ is a ‘Complica-
tion’), the semantic matcher might extract entities for a given
phrase (e.g., ‘blood vessels’) that match both concepts. To
mitigate this issue, THOR further refines entities based on
syntactic criteria.

Recall that for each candidate entity e, the semantic matcher
determines its best matching concept instance cm. THOR
computes three scores to assess the quality of an entity e. The
first, denoted as e.scores in line 10, is the semantic similarity
between the entity (more precisely, the phrase e.p) and its
matched instance. The second, denoted as e.scorew in line 11,
is a word-level syntactic similarity between the entity and its
matched instance; specifically, phrases e.p and cm are viewed
as a set of words, and THOR computes the Jaccard (aka
intersection over union) similarity between the sets. The third,
denoted as e.scorec in line 12, is also a syntactic similarity
between the entity and its matched instance but is computed

at the character level; specifically, e.p and cm are viewed
as strings and the gestalt pattern matching algorithm [96] is
used to compute a string similarity score. All three scores
take values in the [0, 1] range, where higher values mean
higher similarity. THOR combines them into an average score,
and selects the highest scoring entity ebest as the best entity
extracted from phrase p. This entity is added to the list of other
entities associated with the subject concept c∗ of the sentence
that phrase p belongs to (line 15).

Continuing the running example, where the two candidate
entities e1 and e2 have been discovered, THOR next computes
the three scores and averages them. Observe that the phrase
‘non-cancerous brain tumor’ of e2 has a higher syntactic
similarity to its seed instance than the phrase of e1 has.
Therefore, the average score for e2 is higher, and this entity is
selected as the best entity discovered from noun phrase ‘slow-
growing non-cancerous brain tumor’.

Entity e.scorem e.scorew e.scorec e.score

e1 1 0 0.45 0.48
e2 0.8 0.4 0.39 0.53

C. Slot Filling

Phase 3 (lines 16–20 in Algorithm 1) starts once the
document has been conceptualized, i.e., conceptualized entities
have been extracted, and involves enriching the table R. THOR
iterates over subject instances, and for each subject instance
c∗, the row r that has value c∗ in each subject column C∗ is
selected (line 17). Then, for every entity e related to subject c∗,
THOR fills in the slot that corresponds to row r and column
e.C with the extracted phrase e.p (lines 18–20).

Acoustic neuroma Disease  is ... and unsteadiness Complication . 

Tuberculosis Disease  generally ... to  empyema Complication .

Entities Recognized

Enriched Table

Slot-Filling

Subjects Entities

Fig. 4. The slot-filling phase on our Running Example that results in enriching
the table with the extracted conceptualized entities.

Figure 4 illustrates slot filling, where two entities, ‘un-
steadiness’ and ‘empyema’, related to two subjects, ‘Acoustic
neuroma’ and ‘Tuberculosis’, respectively, fill in two slots for
the concept ‘Complication’. Similarly, following the running
example, we will also have ‘non-cancerous brain tumor’
assigned to the slot of ‘Complication’ for ‘Acoustic neuroma’.



V. EXPERIMENTAL SETTINGS

In our experiments, we aim at evaluating the entity-centric
slot-filling task defined in our problem statement. Given a table
R and a set of documents D, the goal is to extract entities from
D and use them to enrich R. To that end, we use two different
datasets, and evaluate the slot-filling task on THOR and SOTA
competitors by means of three experiments.

A. Datasets

Most available benchmarks for slot-filling tasks [97]–[102]
are (a) either too narrow and specific (with only few concepts),
or (b) annotated with a standard predefined tag-set (e.g., loca-
tion, organization), or (c) contains a small number of average
tokens per document, deeming them insufficient. We instead
consider two datasets with a wide variety of entity types, as
found in real-life settings. First, we consider a health-related
data scenario that contains Disease A-Z information with
Conditions. The second dataset consists of Résumé(s)
containing job-seekers information.

TABLE II
CONCEPTS IN THE DISEASE A-Z AND RÉSUMÉ DATASETS (IN BOLD WE

HIGHLIGHT THE SUBJECT CONCEPT)

Dataset Concepts

Disease
A-Z

Disease (C∗), Anatomy, Cause, Complication,
Composition, Diagnosis, Medicine, Precaution,
Riskfactor, Surgery, Symptom

Résumé
Name (C∗), Awards, Certification, Degree, University,
College Name, Language, Location, Worked As,
Skills, Companies Worked At, Years Of Experience

Structured data sources. Each dataset contains a table R.
These tables were created by combining different available
online data. The concepts defining the schema (C) of the tables
(R) used in both datasets are described in Table II. The Disease
A-Z table (RD), created from 10 sources, contains 11 concepts,
284 instances of the subject concept (i.e., rows), and a total
of 4,706 instances. The Résumé table (RR), created from 12
sources, contains 12 concepts, 201 instances of subject concept
(i.e., rows), and a total of 3,119 instances. Both tables can be
found in our Github4.

Text data sources. Additionally, each dataset contains a set
of documents (D) with which we seek to enrich the tables.
To create the ground truth DD for the Disease A-Z dataset,
we collected information related to Disease/Conditions A-
Z5 from several major health portals such as WHO, NHS,
and CDC; ensuring information trustworthiness. We manually
collected texts on 314 diseases and each disease was stored in
a different document. The Résumé dataset DR was generated
by collecting information related to Résumé 6 of job-seekers
[103] and generated 54 documents (each containing 5 CVs).
Table III, provides an overview of the annotated text dataset

4Datasets: https://github.com/dtim-upc/THOR/tree/main/Dataset
5Disease A-Z Data Source: https://www.nhs.uk/conditions/acne/
6Résumé Data Source: https://www.romanshilpakar.com.np/blog/6

TABLE III
ANNOTATED TEXT SOURCES STATISTICS: DISEASE A-Z AND RÉSUMÉ

# Disease A-Z Résumé

Train Valid. Test Train Valid. Test

|dom(C∗)| 240 61 13 100 70 100
Documents 1438 366 90 20 14 20
Entities 18539 3989 2222 1656 1463 2140
Words 168816 38722 19237 41675 25389 38459

statistics, as well as the generated splits. The annotations of
the identified entities were made with regard to the reference
tables schema (i.e., C) described in Table II. The description
of the annotation process is left out of this paper due to space
limitations. However, we report it along with the artifacts
provided4.

Evaluation strategy. For each dataset, we split the ground
truth text data into three sets: train Dtrain, validation Dval and
test Dtest, following standard practices in slot-filling tasks, as
described in Table III. We also created two test tables (RDtest

and RRtest
) from the ground truth test set Dtest. During the

evaluation, we deleted the instances of all concepts from these
test tables (RDtest′ and RRtest′) except for the subject concepts
(i.e., ‘Disease’ and ‘Name’, respectively). Then, we evaluate
THOR and its SOTA competitors by extracting entities from
the test set Dtest and slot-filling RDtest′ and RRtest′. This
setting represents the worst-case scenario for the entity-centric
slot-filling task at hand. The evaluation metrics used are
discussed below, and they are computed by comparing the slot-
filled values in RDtest′ and RRtest′ with RDtest and RRtest .

Evaluation Metrics. We opted for a well-known metric for
text conceptualization, proposed during SemEval-20137 [104],
based on Precision (P), Recall (R), and F1-score that con-
siders partial matching. This is important for evaluating any
IE system [105], especially for the implicit conceptualization
tasks, since an entity could be tagged differently than the
ground truth yet still be partially correct. Take, for example,
the entity ‘main (vestibular) nerve’ where a system might
identify only the ‘vestibular’ portion as an ‘Anatomy’. Al-
though this prediction is correct to an extent, a stricter metric
commonly applied in classification tasks would consider it
wrong. Therefore, selecting a representative evaluation metric
is crucial. Another metric we will be using is the Sensitivity
to have a deeper understanding of the models capabilities to
recognize the entities in the ground truth (i.e., true positives)
for each of the concept categories. This is vital in order
to understand the direct effect of missed predictions (false
negatives) by considering the partial results as well.

B. Experiment-1: Comparison Against State-Of-The-Art

In this experiment, we evaluate and compare the per-
formance of THOR in the presence of complex real-world
concepts against the SOTA methods (see Section II) using the
Disease A-Z dataset. Table IV gives a compact overview of
these approaches, including our own.

7SemEval-2013 Evaluation: https://github.com/MantisAI/nervaluate

https://github.com/dtim-upc/THOR/tree/main/Dataset
https://www.nhs.uk/conditions/acne/
https://www.romanshilpakar.com.np/blog/6
https://github.com/MantisAI/nervaluate


TABLE IV
OVERVIEW OF THE METHODS IN OUR EXPERIMENTS.

Acronym Algorithm/Model Embedding/Pre-training Data Fine-tuning Data
Baseline Aho–Corasick – Structured Data (RD ,RR)
LM-SD RoBERTa-Base BookCorpus, CC-News, OntoNotes5,

OpenWebText, ClearNLP, WordNet
3.0, Stories, English Wikipedia

Structured Data (RD ,RR)

LM-Human RoBERTa-Base Same as LM-SD Annotated Text (Dtrain)
GPT-4 GPT-4 Part of WWW (∼13 trillion tokens),

Human feedback
–

UniNER GPT-3.5 Pile-NER, 40 other NER datasets –
THOR Novel Hybrid Static embeddings from OntoNotes5,

Explosion, WordNet 3.0
Structured Data (RD ,RR)

Baseline. A traditional ER method that uses substring-search
for exact syntactic matching (Aho–Corasick algorithm [106]).
This technique does not require any complex training and
represents a fair baseline to compare with. It uses structured
data as patterns to build a dictionary or lexicon, which is then
further used to match all sub-strings from the text.
LM Fine-tuned on Structured Data (LM-SD). A pre-trained
standard transformer-based Language Model fine-tuned for
the specific task of ER. For this task-specific fine-tuning of
LM-SD, we used the structured data sources. The choice of
LM was a pre-trained RoBERTa-Base [50] model based on
dynamic masking at training time, which showed state-of-the-
art performance for ER [53]. We also verified this specific
model’s performance by comparing it with 6 popular LMs used
in ER literature [107] [108]: BERT-base (cased and uncased),
DistilBERT-base (uncased), BioBERT, ELECTRA-base-NER,
vanilla RoBERTa, XLM-RoBERTa-base. The model we chose
was pre-trained with 7 well-known corpora: BookCorpus,
CC-News, OntoNotes5, OpenWebText, ClearNLP, WordNet
3.0, Stories, and English Wikipedia—making it a very strong
candidate for our evaluation. On top of additional data and
more extensive pre-training, LM uses contextualized word
embeddings, which makes it a very powerful tool for capturing
semantics in text. Since THOR uses only structured data, we
wanted to be fair regarding fine-tuning. Thus, this alternative
will show how good a standard LM is, compared to our
approach when they do not have any annotated text available.
SOTA LLMs (GPT-4 and UnivNER). Recently, prompt-
based zero-shot Large Language Models have been the go-to
option when annotated data are unavailable. Thus two prompt-
based zero-shot SOTA LLMs (GPT-4 [88] and UniversalNER
[25]) are used without further fine-tuning. This setting will
provide a comparison of how well these models perform when
we have a complex schema. We chose two models to capture
two facets of this recent development: (a) the latest version
of OpenAI’s GPT-4 [88], which has been trained with around
13 trillion tokens from the Internet, meaning it is the SOTA
option for generalizability when it comes to natural language
task [109] [110], and (b) UniversalNER [25] model that
showed SOTA results on nearly all the popular benchmark ER
datasets—making it the strongest competitor when it comes
to the conceptualization task. Since it is not possible to fine-
tune these models for the specific task of conceptualization
due to the high computation requirements, we used well-
defined prompts8 for GPT-4 and the recommended prompt9

8GPT-4: https://github.com/dtim-upc/THOR/blob/main/GPT-4/prompts.txt
9UniversalNER: https://huggingface.co/Universal-NER/UniNER-7B-all

by the author of UniversalNER. The context window plays
an important role for these models, as it defines the number
of tokens taken as input when generating responses. We thus
used the maximum possible context window supported by each
model (16k for GPT-4 and 3k for UniversalNER).

LM with Human Annotated Text (LM-Human). A pre-
trained LM (RoBERTa) fine-tuned with properly contextual-
ized text data (i.e., Dtrain) of each dataset. This represents
the ideal situation for LMs. This way, we can compare our
approach to the best possible LMs scenario. It uses the
same RoBERTa-Base model with settings similar to LM-SD
for pre-training. However, since language models are well-
equipped to handle contextualized text data and perform best
when supplied with task-specific (in this case ER) extensively
labeled text, we aim to compare THOR with this best-case
scenario for LM when fine-tuned with properly annotated
text with concepts as labels. In a practical data integration
scenario, it is nearly impossible to annotate a massive amount
of data. Nevertheless, we compare our weakly supervised
approach with this hypothetical case in order to assess the
performance gains from manual annotation for LM, keeping
in mind the need to re-annotate and re-train every time the
reference schema changes.

C. Experiment-2: Manual Vs. Automatic Annotation

LMs trained with an annotated large corpus are the best
option to perform entity-centric slot-filling. However, they
come with several costs that make this scenario not feasible in
realistic data integration settings. As discussed in Section II,
we scrutinize the amount of annotated data required to make
LMs outperform our approach and the computational resources
required for the fine-tuning when executing Experiment-1. In
this experiment, we report on:

1) Performance Comparison with regard to the amount of
available annotated data: Dividing the annotated text data
into different sizes to evaluate the performance of the LM
when fine-tuned with each. We aim to identify the amount
of annotated data required to outperform our approach.

2) Time and Effort Analysis: Based on the previous analysis,
we measure and compare timescales and efforts required in
training an LM to reach the performance of our approach.

D. Experiment-3: Generalizability

In this experiment, we evaluate the generalizability of
THOR. For that, we compare THOR with the SOTA ap-
proaches used in Experiment-1 (see Table IV) in a new
domain (the Résumé dataset). We carefully checked that
the Résumé dataset is not a part of the embedding or pre-
training for any of the approaches, thus representing a common
scenario in organizations where their data does not resemble
that of available open datasets. Thus, in this experiment, we
evaluate how all these approaches cope with mostly unseen
and uncommon datasets.

https://github.com/dtim-upc/THOR/blob/main/GPT-4/prompts.txt
https://huggingface.co/Universal-NER/UniNER-7B-all


VI. EXPERIMENTAL EVALUATION AND RESULTS

We examine the experimental results based on the evaluation
criteria defined in Section V. All artifacts associated to THOR
as well as those related to the reproducibility of experimental
results are openly available at this paper’s companion web-
site10.

A. Experiment-1: Comparison Against State-Of-The-Art

We compare THOR against the SOTA techniques for ER
on text conceptualization. Table V shows the overall results
of THOR for different values of our similarity threshold
(ranging from 0.5 to 1.0 with an interval of 0.1) in the upper
columns. The lower part of the table lists the results of the
comparative approaches. We considered both the fine-tuning
time and inference time together. It shows our model improves
on time as we go stricter on the value of the threshold τ . This
is due to the fact that the stricter version of THOR (τ=1.0)
produces few matching results compared to the more lenient
one (τ=0.0). Thus, the syntactic matchers take way less time
in order to rank the matching results. One other trend to see
here is that, as we go stricter, THOR’s precision (P) increases
(from 0.39 to 0.63), providing the user with a way to be more
precision-oriented. The recall (R), however, decreases due to
the fact that it produces fewer results. We achieved our best
overall F1 score of 0.56 at a threshold value of 0.70.

TABLE V
COMPARATIVE RESULTS FOR SLOT-FILLING ON DISEASE A-Z DATASET

Exp.1 Model Name Time(s) P R F1

THOR

THOR (τ = 0.5) 1781 0.39 0.74 0.52
THOR (τ = 0.6) 870 0.44 0.71 0.54
THOR (τ = 0.7) 493 0.49 0.64 0.56
THOR (τ = 0.8) 427 0.56 0.52 0.54
THOR (τ = 0.9) 425 0.60 0.40 0.48
THOR (τ = 1.0) 425 0.63 0.32 0.42

OTHER

Baseline 524 0.55 0.18 0.27
LM-SD 3626 0.42 0.45 0.43
GPT-4 - 0.49 0.38 0.43

UniNER 3298 0.58 0.33 0.42
LM-Human 3564 0.83 0.56 0.66

An in-depth comparison is depicted in the Precision-Recall
curve of Fig. 5, which shows that THOR dominates all
the models apart from LM-Human, which was trained using
manually-labeled text. THOR also outperforms the competi-
tors in terms of runtime, since inference time drops as the
threshold increases (see Fig. 6). Going back to Fig. 5, the
overall result shows THOR’s superiority in comparison to
both the SOTA LM (LM-SD) and LLMs (GPT-4, UnivNER).
Although these are pre-trained with a massive amount of data
(as discussed in Section V) in the case of LLMs, and further
fine-tuned with structured data in the case of LM-SD, along
with a peak on the properly labeled text from the validation set
during fine-tuning in order to generalize, they tend to perform
poorly as compared to THOR.

10https://github.com/dtim-upc/THOR
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Fig. 5. Precision-Recall Curve for THOR (varying τ ) and the alternatives

Next, we focus on the raw prediction counts made by the
models (Table VI). Here, we compare our top-3 precision-
oriented THOR models with the comparative approaches based
on the ground truth vs. the predictions by these systems. From
Table VI, it is clear that although LM-Human prevails in the
overall F1 score, it does so by predicting less compared to
other models such as THOR (τ=0.8) or LM-SD. LM-SD pre-
dicts more entities but produces a significantly higher number
of incorrect predictions or False Positives (FP) compared to
THOR. We can also observe that the Baseline predicts the
lowest number since it tries to match exactly what it has in
its dictionary. This is one of the reasons why the Baseline
precision is high, but the recall is very low. This implies that
traditional lexicon-based syntactic methods will fail in terms
of detecting out-of-vocabulary (OOV) entities, thus ruling
out exact matching techniques from the equation when it
comes to enriching integrated data with such techniques. In
contrast, THOR (τ=0.8) has the highest number 1, 464 of
correct predictions or True Positives (TP), while being better
compared to most of the models when we consider both
of these parameters (TP and FP). This situation is further
observed in Fig. 7, which shows the deviation from the ground
truth in terms of missed entities or False Negatives (FN).
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TABLE VI
THOR (TOP-3 PRECISION) VS. OTHER MODELS: COMPARATIVE RESULTS
BASED ON RAW PREDICTION COUNT (TP, FP) ON DISEASE A-Z DATASET

Exp.1 Model Ground Predicted Correct Incorrect
Name Truth Entities Predictions Predictions

Entities (TP) (FP)

THOR
THOR (τ=0.8)

2222
2069 1464 605

THOR (τ=0.9) 1496 1129 367
THOR (τ=1.0) 1123 886 237

OTHER

Baseline

2222

725 588 137
LM-SD 2421 1456 965
GPT-4 1724 1089 635

UniNER 1272 951 321
LM-Human 1494 1383 111

Baseline THOR
(T = 1.00)

UniNER GPT-4 THOR
(T = 0.90)

LM-Human LM-SD THOR
(T = 0.80)
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Fig. 7. Bar Chart Representing Overall Prediction Counts Based on TP, FP,
and FN with respect to the Ground Truth Entities of Disease A-Z Dataset

In this experiment, we also observed the problem of uncer-
tainty and hallucination, prevalent in the outputs of GPT-4,
since we manually provided the test cases following a prompt-
based approach. It commonly produces different results for
the same input example. It also generated outputs that were
not part of the input text and overlooked the initial prompt
regarding the schema (label) information. To ensure an accu-
rate evaluation, we had to manually check if it adhered to the
schema and had to intervene to mitigate hallucinations.

The above situation mandates the need for more granular
evaluation metrics like sensitivity score of Table VIII that
takes into account the number of missed predictions (FN)
in the ground truth as shown in Table VII. Both of these
tables depict fine-grained class-wise results in order to have
a deeper understanding of the model performance when it
comes to the recognition of individual concepts. To begin
with, in Table VII we can see that the most recent LLM
based SOTA UniNER model fails to detect even a single entity
for the under-representative class of ‘Composition’. Even
though this UniNER model was trained with multiple clinical
and chemical-related datasets [98]–[100]. Another limitation
of LLMs is the limited context window. The UniNER, in this
case, has a context length of a maximum of 2, 048, meaning it

is unable to parse any text beyond this token length. While that
is the case for LLMs, the standard LM-SD, which was fine-
tuned with the structured data, is mostly biased towards the
most likely class, which is ‘Disease’ in this case. Out of LM-
SD’s 2, 421 total predictions, 819 are labelled as ‘Disease’.
This proves the bias of LLM/LM when it comes to detecting
more complex concept categories having an imbalance sample
space. THOR, however, is more consistent across the classes;
thus, the overall sensitivity score was the highest for THOR
(τ=0.8). The most performant LM-Human, here, comes in
third place, scoring 62.24% in terms of sensitivity (Table VIII)
with relatively higher number of FN (839). Both LLMs (GPT-
4, UniNER) have a high FN compared to our approach.

Compute Requirements. Both THOR and the Baseline model
can be run on a regular CPU without bottlenecks. In contrast,
the requirements for fine-tuning a standard language model
such as LM-SD and LM-Human are comparatively high. We
used an Nvidia RTX 3060 GPU with 6GB of GDDR6 GPU
memory (VRAM) and 3840 CUDA cores, which lead to an
average time of 1–3 hours for fine-tuning. On the other hand,
the prompt-based zero-shot UnivNER LLM model needed an
A100 GPU with 40GB of VRAM just for inferencing over
the test set. It took 34–56 minutes to produce the outputs
of the test documents. Fine-tuning was not an option since,
according to the authors, it needs 8xA100 GPUs and over a
month of training in order to fine-tune it with a custom dataset.
For the GPT-4, we used the ChatGPT with the latest GPT-4
model to do the inferencing on our test data. Normally, GPT-
4 costs around $0.06 for inputs while $0.12 for outputting
1K tokens. Training these models from scratch was deemed
infeasible since it requires approximately 25,000 A100 GPUs
over a period of 100 days.

B. Experiment-2: Manual Vs. Automatic Annotation

Since LM-Human utilizes contextually rich annotated text
data, in this experiment, we want to scrutinize the minimum
amount of annotated text data required to make LMs out-
perform THOR. Thus, the intention is to know the mini-
mum manual effort needed in terms of time and resources
(number of annotators) to annotate a representative dataset,
which can produce better results compared to our approach.
Indirectly, this experiment challenges the credibility of such
SOTA supervised approaches in real-world data integration
scenarios. Table IX shows the minimum and maximum time
taken for annotating single instances of disease, document, and
tokens. It also gives the approximate total duration of hours it
took to annotate the whole dataset. Three annotators having
specialized knowledge annotated the dataset individually. A
separate expert with linguistic knowledge re-assured the proper
annotation in the case of disagreement. Each annotator spent
3–6 hours per day, for well over 3 months for annotation.
Therefore, the human effort of annotating such a dataset is
quite impractical on a case-by-case basis.

Next, in Table X, we analyzed how the performance would
vary compared to THOR if we divided the dataset into smaller



TABLE VII
CONCEPT WISE FINE-GRAINED RESULTS BASED ON PREDICTED ENTITIES (PRED), CORRECT PREDICTIONS (TP), MISSED PREDICTIONS (FN)

Baseline UnivNER GPT-4 LM-Human LM-SD THOR (τ = 0.8)
Concept Ground

Truth Pred TP FN Pred TP FN Pred TP FN Pred TP FN Pred TP FN Pred TP FN

Anatomy 369 203 123 246 317 196 173 324 176 193 217 179 190 432 206 163 386 233 136
Cause 47 23 19 28 42 31 16 85 39 8 42 37 10 133 43 4 106 36 11
Complication 384 122 119 265 210 197 187 216 209 175 212 205 179 244 244 140 345 304 80
Composition 65 12 6 59 0 0 65 44 17 48 18 17 48 90 17 48 30 14 51
Diagnosis 141 25 25 116 22 11 130 140 68 73 93 89 52 80 80 61 102 84 57
Disease 410 109 98 312 262 224 186 172 150 260 379 367 43 819 344 66 347 277 133
Medicine 376 69 65 311 66 60 316 157 141 235 199 191 185 249 235 141 248 220 156
Precaution 72 40 28 44 27 25 47 114 52 20 73 54 18 137 58 14 140 45 27
Riskfactor 136 58 45 91 88 73 63 186 85 51 85 84 52 91 86 50 163 80 56
Surgery 85 11 11 74 29 26 59 49 31 54 63 57 28 39 39 46 80 73 12
Symptom 137 53 49 88 209 108 29 237 121 16 113 103 34 107 104 33 122 98 39

Overall 2222 725 588 1634 1272 951 1271 1724 1089 1133 1494 1383 839 2421 1456 766 2069 1464 758

TABLE VIII
COMPARISON OF MODELS BASED ON SENSITIVITY SCORE

Concept Sensitivity

Baseline UniNER GPT-4 LM-Human LM-SD THOR

Anatomy 33.33% 53.12% 47.70% 48.51% 55.83% 63.14%
Cause 40.43% 65.96% 82.98% 78.72% 91.49% 76.60%
Complication 30.99% 51.30% 54.43% 53.39% 63.54% 79.17%
Composition 9.23% 0.00% 26.15% 26.15% 26.15% 21.54%
Diagnosis 17.73% 7.80% 48.23% 63.12% 56.74% 59.57%
Disease 23.90% 54.63% 36.59% 89.51% 83.90% 67.56%
Medicine 17.29% 15.96% 37.50% 50.80% 62.50% 58.51%
Precaution 38.89% 34.72% 72.22% 75.00% 80.56% 62.50%
Riskfactor 33.09% 53.68% 62.50% 61.76% 63.24% 58.82%
Surgery 12.94% 30.59% 36.47% 67.06% 45.88% 85.88%
Symptom 35.77% 78.83% 88.32% 75.18% 75.91% 71.53%

Overall 26.46% 42.80% 49.01% 62.24% 65.53% 65.89%

TABLE IX
ANNOTATION EFFORTS IN TERMS OF MINIMUM AND MAXIMUM TIME.

Single Disease Single Doc. Single Token Total Duration
80m – 150m 7m – 25m 8s – 13s 600+ Hours

sizes and fine-tuned the same LM-Human model, but this time
with increasing size of the dataset. We divide the dataset based
on the number of diseases, starting with a model LM-Human-
1 fine-tuned with just the annotated documents of a single
disease yielding an F1 score of 0.32. Note that, here, we
calculated the value of the column ‘Annotation Time(s)’ based
on the maximum annotation time of 13s for a single token
according to Table IX. Thus, to interpret, in order to get an F1
score of 0.32, we needed to train an LM with human-annotated
data that took around 12, 649s (∼ 3.5h) per annotator.

Since this single task-specific training information about the
disease was not enough for the LM to reach THOR’s level of
performance, we increased the number of diseases until we
found the cutting point where LM-Human improved THOR’s
best performance (τ = 0.7). This point was at a total of 124
disease-related documents for 20 diseases.

TABLE X
PERFORMANCE VS. ANNOTATION EFFORT ANALYSIS FOR LM-HUMAN
FINE-TUNED ON DIFFERENT SIZES OF DISEASE A-Z AGAINST THOR

Model Name Fine-Tuning Dataset Size F1 Annotation
Time (s)Disease Docs. Entities Words

THOR (τ = 0.7) – – 4706 14010 0.56 0
LM-Human-1 1 8 97 973 0.32 12649
LM-Human-10 10 65 748 8617 0.47 112,021
LM-Human-15 15 93 1059 11886 0.55 154,518
LM-Human-20 20 124 1384 15090 0.60 196,170
LM-Human-240 240 1438 18539 168816 0.66 2,194,608

This phenomenon is illustrated in Fig. 8, where we can see
the effect of annotation time required in order to get the level
of performance (left) beyond our approach results (THOR)
together with the number of documents needed (right). In
conclusion, for LMs, we need approximately 55 hours of
manual annotation time per annotator, along with around 4
human annotators, to annotate and oversee the annotation
process to reach what THOR achieves without any human
intervention. This is without accounting the time required to
reach agreement (a must for rigorous annotations). Further, this
annotation is, however, based on a specific schema consisting
of fixed concept labels. If somewhere along the line, we need
to extend the schema with new concept categories (even for a
single one), the whole annotation process has to be repeated,
and the model needs to be fine-tuned with the new annotations.
This is a major setback for LMs concerning data integration
since schema evolution is a common phenomenon.
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Fig. 8. Annotation Efforts in terms of Time and Performance Gain for LM-
Human Models Fine-tuned on Incremental Size of Disease A-Z Dataset

C. Experiment-3: Generalizability

We conducted this experiment to assess the generalizability
of THOR and its alternatives. The Résumé dataset resembles
the typical data an organization may have available (in this
case, human resources data containing job-seekers informa-
tion, which many companies are nowadays analyzing).

The comparative results of Table XI show that even our most
strict precision-oriented model THOR (τ=1.0) had the highest
recall (R = 0.40) compared to the alternatives while keeping
a steady precision (P = 0.33) and F1-score (0.36). Our
approach provided the highest number of correct predictions
(1244) while the UniversalNER model had the lowest one
(188) among all. THOR’s and GPT-4 F1-score were very
close, but we observe a better correct prediction rate against



the ground truth by THOR (1244/2140) compared to GPT-4
(1030/2140). Figure 9 also shows this trend where our ap-
proach has the lowest number of false negatives (FN = 896).
The results also show that the LM-Human model scored low
when supplied with the same amount of training data as
our previous experiment (test set of 20), showing that the
performance of LMs drops drastically when it comes to unseen
data, as discussed in Section II.

TABLE XI
THOR (TOP-3 PRECISION) VS. OTHER MODELS: COMPARATIVE

OVERALL RESULTS ON RÉSUMÉ DATASET FOR GENERALIZABILITY

Model
Name

Ground
Truth

Entities

Predicted
Entities

Correct
Predictions

(TP)

Incorrect
Predictions

(FP)
P R F1

THOR (τ = 0.8)
2140

4416 1606 2819 0.24 0.50 0.33
THOR (τ = 0.9) 3296 1420 1876 0.29 0.44 0.35
THOR (τ = 1.0) 2541 1244 1297 0.33 0.40 0.36

Baseline

2140

1102 304 798 0.15 0.08 0.10
LM-SD 1045 529 516 0.26 0.12 0.17
GPT-4 2130 1030 1100 0.42 0.38 0.40

UniNER 312 185 127 0.51 0.07 0.12
LM-Human 506 426 80 0.71 0.17 0.27

UniNER Baseline LM-Human LM-SD GPT-4 THOR
(T = 1.00)
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Fig. 9. Bar Chart Representing Overall Prediction Counts Based on TP, FP,
and FN against the Ground Truth Entities on Résumé Dataset

We further analyzed the models predictive abilities on a fine-
grained level by measuring how good they are across concepts.
To that end, Figure 10 shows, via a spider graph, that THOR
dominates almost all the alternatives while maintaining a
balanced F1-score across classes. Although GPT-4 performed
quite well for 5 out of 12 classes, it showed extremely bad
results for ‘Worked As’ and ‘Years of Experience’. Indeed, a
closer look reveals that GPT-4 F1-score is based on a good per-
formance on 3 generic entities: names of people, universities
and companies. In contrast, THOR outperformed or matched
the competing methods in 6 out of 12 classes, particularly
excelling at identifying rare concepts where our approach
stands out. All in all, THOR shows a better sensitivity score
than all the other approaches11.

11More detailed scores (P, R, F1, Sensitivity) can be found in our Github:
https://github.com/dtim-upc/THOR/tree/main/Results/Generalizability

The results of the generalizability experiment showcase the
limitations of cutting-edge NLP techniques (i.e., LMs and
LLMs), which are not prepared to deal with in-company data
that does not resemble that of open datasets and benchmarks
with which they (e.g., GPT4 or UnivNER) are trained with.
THOR, instead, shows a good adaptability even for complex
and unseen entities.
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Fig. 10. Fine-grained F1 score per Concept on the Résumé Dataset

VII. CONCLUSION

We have presented a novel and lightweight approach to
address the data sparsity problem for qualitative data, which
we redefine as an entity-centric slot-filling problem. THOR’s
approach discards the need for identification of subject-verb-
object relations from the text and proposes an entity-centric
approach. Framed under the project DEDS (MSCA-ITN GA
No 955895) these results prove that this greatly reduces the
complexity (both in human effort and computational resources)
of structuring information from unstructured text through
conceptualization while offering a fresh look at mitigating
the problem of data sparsity in integrated data. For our
future work, we will explore means to reduce the number of
false positives in our approach, specially for high recalls, by
further exploring the data integration context and leverage on
contextual embeddings (e.g., using knowledge graphs).
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[43] A. P. Quimbaya, A. S. Múnera, R. A. G. Rivera, J. C. D. Rodrı́guez,
O. M. M. Velandia, A. A. G. Peña, and C. Labbé, “Named entity recog-
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[100] R. I. Doğan, R. Leaman, and Z. Lu, “Ncbi disease corpus: a resource
for disease name recognition and concept normalization,” Journal of
biomedical informatics, vol. 47, pp. 1–10, 2014.
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