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ABSTRACT

Explanations for algorithmically generated recommendations is
an important requirement for transparent and trustworthy recom-
mender systems. When the internal recommendation model is not
inherently interpretable (e.g., most contemporary systems are com-
plex and opaque), or when access to the system is not available (e.g.,
recommendation as a service), explanations have to be generated
post-hoc, i.e., after the system is trained. In this common setting,
the standard approach is to provide plausible interpretations of the
observed outputs of the system, e.g., by building a simple surrogate
model that is inherently interpretable, and explaining that model.
This however has several drawbacks. First, such explanations are
not truthful, as they are rationalizations of the observed inputs and
outputs constructed by another system. Second, there are privacy
concerns, as to train a surrogate model, one has to know the inter-
actions from users other than the one who seeks an explanation.
Third, such explanations may not be scrutable and actionable, as
they typically return weights for items or other users that are diffi-
cult to comprehend, and hard to act upon so to improve the quality
of one’s recommendations.

In this work, we present a model-agnostic explanation mecha-
nism that is truthful, private, scrutable, and actionable. The key idea
is to provide counterfactual explanations, defined as those small
changes to the user’s interaction history that are responsible for
observing the recommendation output to be explained. Without
access to the internal recommendation model, finding concise coun-
terfactual explanations is a hard search problem. We propose several
strategies that seek to efficiently extract concise explanations under
constraints. Experimentally, we show that these strategies are more
efficient and effective than exhaustive and random search.
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1 INTRODUCTION

Recommender systems are becoming ever more prevalent in vari-
ous aspects of our everyday lives and, at the same time, ever more
opaque with complex models trained on a multitude of information
sources. The single most important means to increase the trans-
parency of and foster trust in recommenders is via explanations
[18, 22], which are succinct, human-oriented pieces of information
describing why the system exhibits the observed behavior.

Explainability serves multiple purposes beyond trust and trans-
parency [17]. For example, a system designer may use explanations
to fine-tune the model; explanations to a user could help them
modify their behavior so as to increase their satisfaction. Natu-
rally, a great amount of research has been devoted to designing
interpretable recommender systems [1, 2, 8, 23], which by design
are easier to explain. However, there are many situations where
the need for explainability arises but the underlying system is not
interpretable and cannot be modified. For example, commercially de-
ployed systems are often carefully optimized to serve the business’
internal goals, which do not necessarily align with explainability.
Similarly, when recommendations are outsourced and used as a
service, the inner workings of the system is an intellectual property
of the service provider and cannot be revealed. In situations like
these, the recommendations must be explained post-hoc, after the
system is trained and deployed.

Post-hoc explanation approaches can be distinguished into those
that are model-agnostic and treat the recommender as a black-box
[11,13], and those that are tied to a specific class of recommendation
models [3, 5]. The former have the advantage that they are universal,
but suffer in fidelity, as the explanations are generated with respect
to an interpretable model that only approximates the recommender.
Conversely, the latter creates truthful explanations but cannot be
applied universally. Moreover, all existing methods require access to
the training data, raising privacy concerns, while some additionally
need access to the state of the trained system, which contrasts the
recommendation as a service model. Another limitation of some
post-hoc explainability methods [3, 11, 13] is that they are not
scrutable, since the explanations they return are influence weights
assigned to items or other users that are difficult to comprehend.
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In this paper, we present a post-hoc explanation mechanism that
is model-agnostic and does not suffer from the aforementioned lim-
itations. It returns counterfactual explanations defined as those min-
imal changes to the user’s interaction history that would result in
the system not making the recommendation that is to be explained.
Because counterfactuals achieve the desired output on the recom-
mender itself, rather than a proxy, our explanation mechanism has
the same fidelity as model-specific post-hoc explanations. More-
over, it is completely private, since no other information besides
the user’s interaction history is required to extract counterfactuals.
Finally, owing to their simplicity, counterfactuals are scrutable, as
they present specific interactions from the user’s history, and poten-
tially actionable (e.g., one requests an explanation for an undesired
recommendation, and eventually learns how to change one’s inputs
to affect the system’s outputs).

The search space for finding counterfactual explanations is expo-
nentially large with respect to the number of interactions of a user;
any subset of the user’s interactions is a candidate explanation. In
the absence of any model information, gradient-based optimization
methods (such as [10, 20]) cannot be applied. Moreover, without
making any assumptions about the recommendation engine (as in
[5]), the search space cannot be pruned. Therefore, one has to turn
to heuristic strategies to guide the search space towards candidate
counterfactuals and avoid an exhaustive enumeration of the search
space. We propose several search strategies that exploit information
about the behavior of the recommender deduced from its outputs.
An exhaustive experimental evaluation shows that our strategies
exhibit different performance profiles, and are more efficient that
exhaustive search and more effective than random search.

The remaining of the paper is organized as follows. Section 2
overviews related work. Section 3 introduces our approach for gen-
erating model-agnostic counterfactual explanations. Then, Section 4
presents an experimental evaluation, while Section 5 discusses con-
clusions.

2 RELATED WORK

Explanations accompanying recommendations can serve various
purposes, either for the user receiving the recommendations, or
for the system provider serving them [17]. Explanations can be
presented in various modalities to the user, ranging from textual
information, such as sentences based on templates [23], a list of
relevant tags or features [19]; up to more visual representations,
such as histograms [6], and radar charts [7]. The information to
display in explanations may come directly from the training data
(e.g., [1, 13]), the recommendation model (e.g., [6, 16]), or external
sources (e.g., reviews [4, 9], knowledge graphs [21]).

Research in explainability of recommendations can be divided
into two main fields; see also a recent survey [22]. The first is about
designing interpretable recommenders, i.e., systems intentionally
designed to facilitate generating explanations. Note that there are
several simple recommenders that are highly interpretable, such
as content-based approaches [19], and neighborhood-based collab-
orative filtering (CF) [6, 16], and thus explanations can be built
upon information on users, items, features, or combinations thereof
[12], in different modalities [18]. Modern recommenders based on
latent factors, embeddings, and deep learning, are not inherently
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interpretable. In this case, a typical approach is to try to align latent
factors with external features or aspects (e.g., extracted from re-
views) [2, 8, 23] making them more interpretable. Another approach
is to force latent factor models respect user or item neighborhoods
(e.g., users that purchased the same item should have similar latent
representations) [1], making thus possible to derive explanations
similar to neighborhood-based CF.

The second field is concerned with providing post-hoc explana-
tions, where the system is not modified and the goal is to explain
its outputs after it is trained. In this work, we further distinguish
between true black-box approaches that are model-agnostic and
are thus not bound to any one specific recommender, and grey-box
approaches that only apply to specific recommendation models.
Grey-box methods typically seek to identify the influence of spe-
cific training data points in the recommendation to be explained.
To achieve this, the explanation engine must have access to both
the internal state of the model and the training data. For example,
[3] proposes an efficient method to do influence analysis on the
training data. Naively, to extract the influence of each data point,
one has to remove it from the training data, retrain the model, and
observe the difference in the output. Instead, [3] shows that influ-
ence analysis is possible on latent factor models, as long as one
has access to the gradients of the loss function. Another approach
[5] focuses on recommenders that operate on heterogeneous infor-
mation networks, i.e., graphs encoding the different interactions
(the edges) between users and items (the nodes), and compute a
PageRank-like score for the nodes. Similar to our approach, [5]
seeks to provide counterfactual explanations that identify those
user interactions that when removed would result in a different
recommendation. Contrary to our approach, [5] requires access to
all training data, the trained model, and of course only works for
the specific recommendation engine.

The standard paradigm in model-agnostic (black-box) approaches
is to train an interpretable model on the same data. For instance,
[13] considers explanations based on association rules, and investi-
gates the trade-off between accuracy and interpretability. A more
reasonable approach is to avoid building a single model to explain
all instances, and rather build a local surrogate model designed to
approximate the decisions of the system around the neighborhood
of the instance to be explained [15]. The work in [11] applies this
idea to explain a rating prediction of a recommender. By carefully
selecting a subset of the training data, the method builds a sim-
ple linear model that accurately captures the predictions of the
recommender. The explanation returned is a set of weights on the
user’s past rating, indicating their influence on the recommendation.
The aforementioned model-agnostic approaches suffer in fidelity.
Since explanations are generated by a different model than the one
making the recommendations, the explanations cannot be truthful
and they can only provide with plausible rationalizations of the
observed recommender behavior or relationships in the training
data.

In general, counterfactual explanations [10, 20] have only been
considered in grey-box scenarios, where at least access to the gradi-
ents of the model’s loss function is assumed [10]. The main reason
for this is that the space of possible counterfactual explanations
is large, and thus to find the best explanation one has to guide
the search via gradient-based optimization. In this work, we show
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that it is feasible to extract counterfactual explanations in a model-
agnostic scenario. Specifically, we guide the search heuristically
using information derived from the observed output of the rec-
ommender. In some sense, we are using a surrogate model of the
recommender, not to create explanations, but to find them. This
combines the fidelity of counterfactual explanations, with the mini-
mal requirements imposed by black-box approaches. Moreover, our
approach respects the privacy of other users, as it does not require
access to all training data.

3 MODEL-AGNOSTIC COUNTERFACTUAL
EXPLANATIONS

Problem Definition. In this section, we introduce the notion of
model-agnostic counterfactual explanations, and present mecha-
nisms to generate them. Our approach is universal and applies to
almost all recommender systems, as we only make the minimum
necessary assumptions.

A user has interacted with (purchased, clicked on, viewed, etc.)
a set of interacted items I, where n = |I|. Given as input the set I,
the recommender system produces recommendations R, which is a
ranked list of m = |R| items. The explanation need is the following:
the user requests to find out why a particular target item t € R
was recommended. We denote as target position the position of
the target item in the recommendations. For the given request,
the explanation mechanism returns a counterfactual explanation
E, which is a subset of interacted items, E C I, such that had the
user only interacted with items I \ E, the recommender would
return a list R* of m recommendations that do not contain the
target item, i.e., t ¢ R’. We additionally term as C C I a candidate
counterfactual explanation, i.e. a subset of items to remove that has
not yet been evaluated as to whether it achieves the desired goal of
t ¢ R’. Here, the set of interacted items I has occured and is thus
the factual, while the set I \ E is an alternate but feasible reality,
the counterfactual. A counterfactual explanation E draws a causal
connection [14] between the user’s input I and the recommender’s
output ¢.

Methodology. As mentioned, the goal of the problem is to search
the space of subsets C C I (candidate solutions) of interacted items
in order to identify subset E, which, upon removal from the user
interactions, leads to the removal of target item t from the recom-
mendation list. It is evident that the smaller the size of subset E
(alternatively the explanation length), the better the explanation:
a user is expected to more easily understand and be satisfied by a
simpler (i.e., shorter) counterfactual explanation [20]. Note that the
aforementioned objective is equivalent to maximizing the number
of remaining interactions I \ E. However, searching the whole space
of subsets C becomes infeasible as the size n of the interaction
history increases, thus heuristics need to be defined for searching
this space as effectively and efficiently as possible. Consequently,
another restriction of the problem is posed by an available budget
B given to perform this search. The budget is defined in terms of
the times an algorithm evaluates (i.e., invokes the recommender
for) a candidate solution (C) as to whether the goal of removing the
target item ¢ is achieved or not.

Thus, a heuristic algorithm needs to balance the objective of dis-
covering a small counterfactual explanation E, with the restriction
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of spending at most a budget of B. Our search space of candidate so-
lutions C forms a partially ordered set (ordered by inclusion), which
can be represented by a lattice (starting from the empty set and
ending to I). Upon this lattice, various graph traversing algorithms
can be applied in order to identify counterfactuals. Next, we first
present two naive traversing solutions and then, three more elabo-
rate algorithms we propose for effectively and efficiently solving
the problem.

Baseline Strategies. We first describe the two baseline strategies.

Random Search (Rnd). The strategy randomly considers candi-
dates with respect to both the cardinality and the selected items.
It terminates when budget B is spent and keeps, among all coun-
terfactuals (candidates that achieve the target objective), the one E
with the minimum size (explanation length) if one exists.

Exhaustive Search (Exh). The strategy considers candidates in
increasing cardinality: first it examines all sets with cardinality 1,
then with 2, and so forth. The strategy terminates as soon as a
counterfactual explanation is found, since this is optimal in terms
of its length, or if the budget is spent.

Proposed Strategies. For the following strategies, we introduce
two quality measures of a candidate counterfactual C that can guide
the search.

The first is the normalized length, defined as I[(C) = %, ie.,
the ratio of the number items in the candidate with respect to all
interacted items. Because C C I, the normalized length takes values
in the range (0, 1].

The second is the impotence of a candidate, defined as i(C) =

m—rank(#;C)+1
m

max { , 0}, where rank(t; C) indicates the position of

the target item ¢ in the recommendations produced by the system if
the set of interacted items was C instead of I. Impotence measures
the inability of the set C of interacted items to explain candidate ¢.
On the one hand, if the candidate C is a counterfactual explanation,
item ¢ would be ranked after the m-th item, and hence impotence
takes its lower value of zero. On the other hand, if C results in item
t being ranked top, impotence takes its highest value of one.

For both measures, lower values for a candidate are desired, i.e.,
small normalized length, and small impotence.

Breadth First Search (BFS). This strategy operates in two phases.
In the first, it tries to quickly identify a candidate that is an expla-
nation, while in the second, it seeks to refine that explanation.

Specifically, in its first phase, BFS starts from the empty set and
incrementally builds a candidate by appending one item at a time.
Let C denote the current candidate. BFS will consider all candidates
of one more cardinality, i.e.,, C’ = C U {i} for every itemi € I \ C.
For each such candidate C’ BFS invokes the recommender and
based on its response, BFS computes the rank of the target item ¢
and consequently the impotence of C’. The strategy then picks the
C’ with the lowest impotence and proceed to the next step. This
iterative process terminates when a counterfactual explanation is
identified.

The second phase begins when a counterfactual explanation, say
C, is determined. The goal is to investigate whether there exists any
counterfactual that is a subset of C, and is thus shorter. Therefore,
BFS initiates a breadth-first search on the sub-lattice rooted at C and
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containing all subsets of C. Specifically, it investigates all subsets
of C with cardinality |C| — 1 (at the same lattice level), then those
of cardinality |C| — 2, and so forth. The strategy terminates if the
search is completed or if the budget is depleted. As in all strategies,
BFS returns the counterfactual explanation E with the minimum
length — which in this case, is the last counterfactual identified
(since candidates are considered in decreasing cardinality order).

Priority Search (Pri). This strategy seeks to visit parts of the
lattice that appear promising. Each candidate is assigned a priority
score computed as a convex combination of its normalized length
and impotence:

s(C) = a-i(C) +(1-a) - 1(C),

where a € [0,1] is a weighting factor.

As candidates are explored, they are added to a min-heap with
key their priority score. At each iteration of Pri, the candidate C
with the least score is deheaped. Since C is the currently most
promising candidate, the strategy decides to explore its neighbor-
hood hoping an even more promising candidate would be found.
Therefore, Pri considers all subsets of C with cardinality |C| — 1
and all supersets of C with cardinality |C| + 1. For each candidate
in the neighborhood of C, Pri invokes the recommender, computes
its priority score, and enheaps it. After the budget is depleted, Pri
returns the counterfactual explanation E with the minimum length
if one is found.

Hybrid Search (Hyb). This strategy is a hybrid of the exhaustive
and the priority search. It is motivated by the fact that in most cases
a short explanation can be found. Therefore Hyb chooses to exhaus-
tively consider all candidates up to a fixed small cardinality size,
e.g., 2. Obviously, if any counterfactual explanation is found, the
strategy terminates. Otherwise, the priority score of each examined
candidate is computed, and all candidates are enheaped. From that
point on, Hyb behaves exactly like priority search, traversing the
lattice until the budget is spent. Compared to Pri, hybrid search
essentially bootstraps the priority queue-based search by consider-
ing all small-cardinality candidates. In our evaluation, we consider
only candidates with up to two interacted items.

4 EXPERIMENTS

Experimental Setup. We present an experimental evaluation seek-
ing to answer the following question:

Are the proposed heuristic strategies more effective than a simple ex-
haustive enumeration and a random search for finding counterfactual
explanations?

For this reason, we compare our strategies with two baselines,
Exhaustive and Random. For the Priority and Hybrid approaches,
we consider various weight values @ among {0.001, 0.5, 0.999}.

We consider the following explanation scenario. A user is pre-
sented with a recommendation list R, and wishes to receive an
explanation about why a specified target item is recommended.
The explanation mechanism has a budget to spent looking for a
counterfactual explanation. This budget is measured in terms of the
number B of calls to the system to generate recommendations; e.g.,
it is assumed that these calls are expensive in terms of money (paid
service) or time (response), or both. When the budget is depleted,
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the explanation mechanism then returns the best, i.e., shortest,
counterfactual explanation it was able to find, or returns “not ex-
plainable” in case it cannot find one.

As the underlying black-box recommender, we use the LSTM-
based session-based recommender implemented by the Spotlight
library !, and the MovieLens 100K dataset. We generate top-20
(i.e., m = 20) recommendations for all users with more than 20
interactions in the dataset, and among these interactions, we keep
the first 20 interactions so that all requests for explanations have the
same characteristics. To measure the effectiveness of the strategies,
we compute (1) the average length of the returned counterfactual
explanation, and (2) the percentage of recommendations that were
explained.

Target position 1
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(b) Recommendations successfully explained per budget.

Figure 1: Explanation effectiveness of compared methods for
target recommendations items at position 1.

Results. In figs. 1a, 2a and 3a, we execute each of the proposed
algorithms and utilize a set of specified budgets to spend in order

!https://github.com/maciejkula/spotlight
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(b) Recommendations successfully explained per budget.

Figure 2: Explanation effectiveness of compared methods for
target recommendations items at position 3.

to find a valid solution. For each of these predefined budgets, we
calculate the average length of the counterfactual explanations,
i.e., sets of removed items that moved the target item beyond the
m—th position in the recommendation list within the available
budget. Moreover, in figs. 1b, 2b and 3b, we count the number
of recommendations that an explanation is provided to the total
examined cases, again for a set of specified budgets.

A first comment is that the Random algorithm does not man-
age to provide satisfying recommendations, neither regarding the
size of the counterfactual, nor w.r.t. to handling all the cases, es-
pecially when the budget is relatively small, as expected. On the
other hand, BFS and Exhaustive give the upper and lower limit of
the best solutions anyone could expect taking into account differ-
ent aspects of the problem. BFS provides a fast solution without
spending a lot of the available budget at the expense of very long
counterfactuals in length, i.e., average explanation length is high.
Exhaustive finds out the shortest counterfactual, in length terms.
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Figure 3: Explanation effectiveness of compared methods for
target recommendations items at position 5.

However, the explained recommended cases are lower that the rest
of the proposed algorithms, except for Random in most examined
budgets. Although none of the algorithms seem to provide the best
overall solution, Priority and Hybrid, with a = 0.999 weight, man-
age to give good solutions. The Priority algorithm explains more
recommendations than Hybrid at the expense of a higher average
explanation length. Finally, we notice that searching for good rec-
ommendations is highly affected by the position of the target item
in the recommendation list. As the target position is closer to the
m~—th position of the list, i.e., figs. 3a and 3b, both examined metrics
are getting better and this affects all the algorithms.

Findings. The following conclusions can be drawn from the evalua-
tion. Regarding the baselines, Random Search can identify solutions,
but requires considerable budget in order to return short explana-
tions. Exhaustive Search can identify counterfactuals that are short,
but soon depletes the budget and cannot provide explanations for
the hard cases, where more than three interactions (i.e. |[E| > 3)
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have to be removed. The BFS method is very good at finding valid
explanations, exhibiting the highest rate of explained recommen-
dations at a low budget, but at the cost of creating relatively long
explanations that may be harder to interpret. So if providing expla-
nations to as many users as possible is of primary concern, then BFS
should be preferred. The Priority and the Hybrid search strategies
provide a better balance between the quality of the explanation, its
length, and the time they spent looking for one. Specifically, Hybrid
is able to both derive early on good recommendations, and improve
upon the initial explanations over time.

5 CONCLUSION

This work presented a model-agnostic post-hoc explanation mech-
anism for recommendations that is truthful, private, scrutable, and
actionable. From the user’s interactions history, it extracts counter-
factuals, which are those interactions that when removed would
result in a different recommendation. In the absence of any informa-
tion about the recommender, we propose several heuristic search
strategies that are able to quickly identify succinct explanations.
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