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Abstract—The constantly increasing rate at which scientific
papers are published makes it difficult for researchers to identify
papers that currently impact the research field of their interest.
In this work, we present a method that ranks papers based on
their estimated short-term impact, as measured by the number
of citations received in the near future. Our method models
a researcher exploring the paper citation network, and intro-
duces an attention-based mechanism, akin to a time-restricted
version of preferential attachment, that explicitly captures the
researcher’s preference to read papers which received a lot of
attention recently. A detailed experimental evaluation on real
citation datasets across disciplines, shows that our approach is
more effective than previous work.

Index Terms—citation networks, paper ranking, data mining

I. INTRODUCTION

Assessing the scientific impact of publications, colloqui-
ally called papers, is an important research problem with
various applications (e.g., literature exploration, researcher
assessment, research funding planing), especially since the
number of papers published grows at an increasing rate [1].
Conventionally, quantifying the scientific impact of a paper
depends on the network of citations. In this work, we focus
on the short-term impact (STI) of a paper, quantified by the
number of citations it acquires in the near future (referred
to as “new citations” [2], or “future citation counts” [3]).
Specifically, we address the research problem of ranking
papers via their expected STI.

Existing work typically assigns to each paper a proxy score
estimating its expected short-term impact. These scores are
determined by a stochastic process, akin to PageRank [4],
modelling the impact flow in the citation network. The im-
portant concern here is to account for the age bias inherent in
citation networks [5]: as papers can only cite past work, recent
publications are at a disadvantage having less opportunity
to accumulate citations. A popular way to address this is
by introducing time-awareness into the stochastic process, by
favoring either recent papers or recent citations [2], [3], [6].
Nonetheless, it has been shown [7] that these methods still
leave enough space for further improvements.

In this work we posit that recent citations (i.e., the level
of attention papers currently enjoy) strongly influence the
short-term impact. We investigate this hypothesis and find
that it holds to a certain degree across different citation

networks. Hence, we introduce an attention-based mechanism,
reminiscent of a time-restricted version of preferential at-
tachment [8], that models the fact that recently cited papers
continue getting cited in the short-term. We then develop a new
paper ranking method, called AttRank, that takes advantage of
this mechanism to provide improved estimations for ranking
papers accoriding to their expected STI.

To evaluate AttRank’s effectiveness we perform an exten-
sive experimental evaluation on two citation networks from
various scientific disciplines. We measure effectiveness as the
ranking accuracy with respect to the ground truth STI ranking.
We investigate the importance of the attention mechanism
in achieving high effectiveness. We also compare AttRank
against several state-of-the-art methods, which are carefully
tuned for each experimental setting. Our findings indicate that
across almost all settings, AttRank outperforms prior work.

II. BACKGROUND AND RELATED WORK

Citation Network. We represent a collection of papers as
a citation network, i.e., a directed graph where each node
corresponds to a paper, and each edge to a citation. A citation
network can be represented by its citation matrix C, where
Ci,j = 1 iff paper j cites paper i, and Ci,j = 0, otherwise. We
follow the convention that paper ids indicate the publication
date order; i.e., paper i was published before j iff i < j.

To distinguish between different states of the citation net-
work as it evolves over time, we use the superscript parenthe-
sis notation (t) to refer to a state where only papers with
id up to t have been published. For example, C(t) is the
t × t citation matrix for the first t papers. Because of how
the citation matrix evolves, C(t) is a submatrix of C(t′) when
t < t′. We use the subscript bracket notation [n] to refer to
a submatrix containing the first n rows and columns, or to a
subvector containing the first n entries; [−n] denotes the last
n rows/columns/entries. For example, the previous observation
can be expressed as C

(t)
[n] = C

(t′)
[n] for any n ≤ t < t′.

PageRank. PageRank [4] measures the importance of a node
in a network, based on a random walk with jumps process.
In the context of citation networks, the process simulates a
“random researcher”, who starts their work by reading a paper.
Then, with probability α, they pick another paper to read from



the reference list, or, with probability 1−α, choose any other
paper in the network at random.

Given a citation matrix C, we define the stochastic matrix S
as follows. Let ki denote the number of papers cited by i.
Then, Si,j = 1

kj
, iff paper j cites paper i, Si,j = 0, iff j does

not cite i but cites at least one other paper, and Si,j = 1
n ,

iff paper pj cites no paper (i.e., is a dangling node), where
n is the number of papers. Let u denote the teleport vector
(all vectors are column vectors) such that |u| ≡

∑
i ui = 1

and ∀i ui ≥ 0; typically, u is defined to indicate uniform
teleport probabilities, i.e., ∀i ui = 1/n. Let α ∈ [0, 1) denote
the random jump probability. Then the PageRank vector v is
defined by this equation:

v = αSv + (1− α)u. (1)

We say that v is the PageRank vector of matrix S with
respect to teleport vector u. The PageRank vector is given by
the following closed-form formula:

v = (1−α)u+(1−α)

∞∑
x=1

αxSxu = (1−α)

∞∑
x=0

αxSxu, (2)

where the convention A0 ≡ I is used in the last equality.
If we define M = (1 − α)

∑∞
x=0 α

xSx, then we observe
the linear relationship between the PageRank and the teleport
vector: v = Mu.

Computing the PageRank vector is not done by computing
matrix M , but by iteratively estimating v via Equation 1.
Starting from some random values for v, satisfying |v| = 1
and ∀i vi ≥ 0, at each step we update the PageRank vector
as v ← αSv + (1 − α)u. In other words, for a given u, we
have a convenient method to estimate Mu.
Short-Term Impact (STI). Using node centrality metrics
(e.g., PageRank or the number of citations) to capture a paper’s
impact can introduce biases, e.g., against recent papers, and
may render important papers harder to distinguish [9]. This
is due to inherent characteristics of citation networks: the
references of a paper are fixed, and there is a delay between a
paper’s publication and its first citation (“citation lag” [10]).
In contrast, a paper’s short-term impact [7], also called the
number/count of new/future citations [2], [3], looks into a
future state of the network and reflects the level of attention
(in terms of citations) a paper will receive in the near future.

Consider the state of the citation matrix at present time n.
Given a time horizon of τ , the short-term impact (STI) fi of
a paper i (i ≤ n) is defined as the number of future citations,
i.e., those it would receive in the time period (n, n+ τ ]:

fi =

n+τ∑
j=n+1

C
(n+τ)
i,j .

Some observations are in order. First, τ is a user-defined
parameter that specifies how long in the future one should
wait for citations to accumulate. An appropriate value may
depend on the typical duration of the research cycle specific to
each scientific discipline. Second, it is important to emphasize

that STI can only be computed in retrospect; at current time,
the future citations are not yet observed. Thus, any method
that seeks to identify papers with high STI has to employ a
mechanism to account for the unobserved future citations.

With these remarks in mind and similar to prior work [2],
[3], [7], we study the following problem.

Problem 1. Given state C(n) of the citation network at current
time n, return a ranking of papers such that it matches their
ranking by short-term impact f for a given time horizon τ .

Impact estimation methods. In recent years, various methods
have been proposed for quantifying the scientific impact of
papers [7]. A large number of methods are PageRank adapta-
tions tailored to better simulate the random researcher behav-
ior (e.g., [11]). However, such approaches do not address age
bias. This motivated a number of time-aware methods, which
introduce time-based weights in the various centrality metric
calculations, to favor either recent publications (e.g., [2], [6])
or recent citations (e.g., [3]), or citations received shortly after
the publication of an article (e.g., [12]).

Although time-awareness is shown to improve the accuracy
when ranking by STI, it fails to differentiate among recent pa-
pers favoring all equally. An alternative approach is to combine
the basic citation network analysis process with an iterative
processes on multiple interconnected networks, e.g., author-
paper and/or venue-paper networks (indicative example: [13]).
There are also methods that consider ensembles that combine
the rankings from multiple methods. Methods in this category
(e.g., [14]) combine several types of scores calculated on
various graphs (e.g., citation network, co-authorship network).
Finally, a separate line of work is concerned with impact
prediction algorithms which are based on modeling the arrivals
of citations for individual papers (e.g., [15]), however such
methods are prone to overfitting [16], and require a long
history (≥ 5 years) of observed citations for each paper.

It is apparent that, all previous approaches focus on using
additional data resources (e.g., venues, co-authorship net-
works) in an attempt to alleviate the aforementioned recent
paper differentiation issue of the time-aware methods. How-
ever, such data is not readily available, fragmented in different
datasets, not easy to collect, integrate and clean, and is often
incomplete. In contrast, our approach is to rely solely on the
properties of the underlying citation network, and try to better
model the process with which the network evolves.

III. APPROACH

Overview. To rank by short term impact without knowing
the future, one needs to introduce assumptions about how the
citation network evolves. In this work, we assume that the
PageRank vector at time t ≥ n indicates the chance the papers
will get cited at future time t+ 1. This defines a mechanism,
where a random researcher explores literature. While reading
a paper, the researcher may choose with probability α to
further read one of the paper’s references, or pick another
paper at random from some prior (teleport) probability. So the



probability of a paper i receiving a citation from a random
researcher at time t+ 1 is proportional to their PageRank v(t)i
at time t, which satisfies:

v(t) = αS(t)v(t) + (1− α)u(t),

where S(t) is the stochastic matrix and u(t) is the teleport
vector at t.

The short-term impact of a paper is the sum of citations
it will receive at each time t between n + 1 and n + τ .
Let us further assume that each paper in the future (after
current time n) makes the same number of citations. So, under
our assumptions, the number of future citations fi a paper i
receives is proportional to:

fi ∝
τ−1∑
t=0

v
(n+t)
i .

For the purposes of ranking, the scale of individual fi does
not matter. Therefore, to rank by STI we would like to estimate
the following vector:

y =

τ−1∑
t=0

v
(n+t)
[n] , (3)

i.e., the sum at each future timestamp of the PageRank of the
present n papers.

In Equation 3, each PageRank vector v
(n+t)
[n] is a random

vector under the aforementioned citation network growth pro-
cess, and its value depends on the values of the PageRank
vector at previous times. Therefore, one way to estimate the
mean of y is with Markov Chain Monte Carlo methods to draw
samples from the probability distribution of y. This however is
costly, as each sample requires the computation of τ PageRank
vectors for a large citation network with at least n nodes.

We propose a different approach. We start by assuming
that the future citation matrix and thus S(n+τ) is known.
Conditional to S(n+τ), the PageRank vector v

(n+t)
[n] become

independent. We then apply a mechanism to rewrite Equation 3
so that it can be computed with a single PageRank compu-
tation. This rewriting now has quantities derived from the
S(n+τ) matrix. At the final step, we estimate these quantities
from the current (at time n) state of the network, and compute
the rewritten Equation 3.

We next describe the mechanism that allows us to rewrite
Equation 3 as a single PageRank computation.

Contraction. Consider a network of n+m nodes, represented
by its stochastic matrix S, where its m last nodes have no
incoming edges. Given some teleport vector u and random
jump probability α, let v denote the PageRank vector that
satisfies v = (1 − α)

∑∞
x=0 α

xSxu. The PageRank scores
v[n] of the first n nodes can be computed directly from
the PageRank on the stochastic matrix S[n] with respect to
an adjusted teleport vector ů, as indicated by the following
theorem. Note that all proofs can be found in the extended
version of this paper [17].

Theorem 1. Let v denote the PageRank vector for stochastic

matrix S =

(
S[n] S[n],[−m]

0(m×n) 0(m×m)

)
with respect to teleport

vector u and random jump probability α. Define the adjusted
teleport vector ů[n] = u[n] + α

∑m
i=1 un+iS[n],n+i. Then it

holds that:
1

|v[n]|
v[n] =

α

|v[n]|
S[n]v[n] +

1− α
|ů[n]|

ů[n],

where |ů[n]| = |v[n]| = 1− (1− α)
∑m
i=1 un+i.

In other words, to compute the PageRank w.r.t. S for the
first n nodes, we can use an adjusted teleport vector ů[n] (after
normalization) to compute the PageRank w.r.t. S[n], and then
scale the result by |ů[n]|.
Applying Contraction. We will apply the contraction idea to
compute each future PageRank vector v

(n+t)
[n] as a PageRank

vector of the current stochastic matrix S(n), assuming that its
future state S(n+t) is known. Note that to apply the contraction
idea, we need to restrict each future paper i to cite no other
future paper j (n < j < i), i.e., citations only come for
papers already published until current time n. This restriction
only affects the PageRank values of the future papers, which
however we do not need to rank.

Note that for any time n+ t where t > 0, the first n rows
and columns of the stochastic matrix S(n+t) remain constant,
and we denote S ≡ S

(n+t)
[n] . From Theorem 1 we have:

1

|v(n+t)
[n] |

v
(n+t)
[n] =

α

|v(n+t)
[n] |

Sv +
1− α
|v(n+t)

[n] |
ů
(n+t)
[n] .

Defining M = (1− α)
∑∞
x=0 α

xSx, we rewrite the previous
equation in the closed form of Equation 2:

v
(n+t)
[n] = Mů

(n+t)
[n] .

From the definition of STI, we derive:

y =

τ−1∑
t=0

v
(n+t)
[n] = M

τ−1∑
t=0

ů
(n+t)
[n] ,

where ů
(n+t)
[n] = u

(n+t)
[n] + α

∑m
i=1 u

(n+t)
n+i S

(n+t)
[n],n+i.

For convenience, we further assume that the teleport vector
for the first n papers is the same at each time n+ t, and we
denote it as u ≡ u

(n+t)
[n] . We thus split the adjusted teleport

vectors into a non-time-dependent component and a time-
dependent component: ů

(n+t)
[n] = u + w

(n+t)
[n] . Summing the

time-dependent components for 0 ≤ t ≤ τ − 1, we introduce:

w ≡
τ−1∑
t=0

w
(n+t)
[n] = α

τ−1∑
t=0

t∑
i=1

un+iS
(n+t)
[n],n+i.

Then, the STI can be expressed as:

y = M(τu + w),

meaning that ŷ ≡ y
|y| can be computed as the PageRank vector

of matrix S with respect to teleport vector τ
|y|u+ 1

|y|w. Intro-
ducing coefficients α, β, γ ∈ [0, 1], such that α + β + γ = 1,
we can write STI in a general form:

ŷ = αSŷ + βŵ + γû, (4)



where ŵ and û are the normalized vectors of w and u.
Attention. Because the time-dependent vector w is determined
by quantities of future states S(n+t), we need to estimate it
from the known current state S. A simple way is instead of
going τ time steps in the future, to go y time steps in the
past. Assuming teleport probabilities un+t for future papers
are equal, we estimate:

w̃ ∝
y−1∑
t=0

t∑
i=0

S[n],n−i =

y−1∑
i=0

(y − i)S[n],n−i. (5)

We call this estimated vector w̃ the attention vector, because
for each paper i, it computes a weighted count of its citations
from the y most recent papers, i.e., its recent attention w̃i ∝
ySi,n + (y − 1)Si,n−1 + · · ·+ Si,n−y+1.

Attention, however, is not the only mechanism that governs
which papers researchers read. Naturally, researchers may read
a paper cited in the reference list of another paper. Moreover,
similar to previous work [2], [6], we assume that researchers
also read recently published papers. Specifically, we capture
the recency of a paper i using an exponentially decaying score:

ui = ceη·(n−i), (6)

where n is the current time, i < n denotes the publication
time of paper i, hyperparameter η is a negative constant (as
n − i ≥ 0), and c is normalization constant so that |u| = 1.
To calculate a proper η value, a similar procedure like the one
used in [6] can be followed (see also Section IV-B).
AttRank. We refer to the ranking approach based on Equa-
tions 4, 5, and 6 as AttRank. Note that Eq. 4 combines three
mechanisms. Specifically, we assume that researchers read a
paper for one of the following reasons: the paper gathered
attention recently, was recently published, or was found in
another paper’s reference list. We model this behavior with the
following random process. A researcher chooses to read any
other paper from paper i’s reference list, after reading it, with
probability α. With probability β she chooses a paper based
on its attention. This behavior makes recently rich papers
even richer, and is reminiscent of a time-restricted preferential
attachment mechanism of the Barabási-Albert network growth
model [8]. Finally, with probability γ she chooses any paper
with a preference towards recently published ones.

Two special values for coefficient β are noteworthy. First,
observe that when β = 0, a setting we call NO-ATT (for no
attention), the model becomes similar to time-aware methods
that address the inherent bias against new papers in citation
networks (see [7] for a thorough coverage of such approaches).
Note that additionally setting η = 0 in Eq. 6 recovers
PageRank. Second, when β = 1, a setting we call ATT-ONLY
(for attention only), AttRank is solely based on the attention
mechanism, assuming that the recent citation patterns will
persist exactly in the near future. To the best of our knowledge,
ATT-ONLY has not been considered in the literature as a
means to estimate the short-term impact of a paper. As we
show in Section IV, attention alone is a powerful mechanism,
often outperforming existing approaches. However, β = 1 is

never the optimal setting; it is always better to consider atten-
tion in combination with the other two citation mechanisms.

Equation 4 describes an iterative process for estimating STI
vector: starting with a random value, at each step update the
vector with the right hand side of the equation. This process
is repeated until the values converge. The following theorem,
ensures that convergence is achievable.

Theorem 2. The iterative process defined by Eq. 4 converges.

IV. EVALUATION

This section presents an experimental evaluation of our
approach for ranking papers based on their short-term impact.
Specifically, Section IV-A discusses the experimental setup
and evaluation approach taken. Section IV-B investigates the
effectiveness of our proposed method and the importance
of the attention-based mechanism. Section IV-C compares
AttRank with existing approaches from the literature.

A. Experimental Setup

Datasets. We consider two datasets in our experiments:
1) American Physical Society (APS)1 dataset, which con-

tains about 500, 000 papers, written from 1893 to 2014.
2) DBLP,2 which contains about 3 million computer sci-

ence papers published from 1936 to 2018.

Evaluation Methodology. To evaluate the effectiveness of Att-
Rank in ranking papers based on their short-term impact, we
construct a current and a future state of the citation network.
We partition each dataset according to time in two parts, each
having an equal number of papers. We use the older half to
construct the current state of the citation network, denoted
as C(n). All ranking methods will be based on this network
acting as the “training” subset. We use parts of the newer
half to construct the future state of the network, denoted as
C(n+τ). All ranking methods will be evaluated based on this
network acting as the “test” subset.

Specifically, the future state is constructed as follows: we
vary the size, in terms of number of papers, of the future
state relative to the size of the current state. Thus we do
not vary the time horizon τ directly, but rather the test ratio,
which is the relative size of the future with respect to the
current network. We consider values for the test ratio among
{1.2, 1.4, 1.6, 1.8, 2.0}, where 2.0 corresponds to using all
citations in the dataset to define the future state. In some
experiments we fix the test ratio to a default value of 1.6,
meaning that the future state contains 30% more papers than
the current state. Note, that the relationship between test
ratio and τ is not linear, due to the non-constant number
of published papers per year and the fact that most datasets
contain incomplete entries for the last year they include.

Given the future state of the citation network, we can
compute the STI of each paper as per its definition (see
Section II). Similar to previous approaches [2], [3], [6], [7],

1https://journals.aps.org/about
2https://aminer.org/citation



the ranking of papers based on their STI forms the ground
truth. Any paper ranking method is oblivious of the future
state C(n+τ) of the citation network, and hence the ground
truth, and only uses the current state C(n) to derive a ranking.
To quantify the effectiveness of a method, we compare its
produced ranking to the ground truth, using Spearman’s ρ [18],
and the Normalized Discounted Cumulative Gain at rank k
(nDCG@k). While Spearman’s ρ calculates an overall simi-
larity of the given ranking with the ground truth, nDCG@k
measures the agreement of the two rankings on the top-ranking
papers. In our evaluation, we consider values of k among
{5, 10, 50, 100, 500}, with k = 50 being the default value.

B. Ranking Effectiveness

In this section, we investigate AttRank’s effectiveness for
the default experimental setting (test ratio equal to 1.6),
varying parameters, α, β, γ, and y. We vary α, β, γ with a step
of 0.1 in the ranges [0.0, 0.5],[0.0, 1.0], [0.1, 0.9], respectively
and y in {1, 2, 3, 4, 5}. For each metric, we discuss AttRank’s
parameterization that achieves the best ranking effectiveness.

First, however, we discuss how we set the value of the
exponential factor η of Equation 6. We follow a similar
approach as the one used in [6]. For each dataset, we use
an exponential function of the form eη̃y , to fit the tail of the
empirical distribution of the random variable Y that models
the probability of an article being cited n years after its
publication. The factor η̃ of the fitting function is used as the
η value. Following this procedure, we calculate η = −0.12
for APS and η = −0.16 for DBLP.

1) Effectiveness in terms of Correlation: In this experi-
ment, we measure AttRank’s ranking effectiveness in terms
of Spearman’s ρ to the ground truth ranking by STI. We
find the optimal values for {α, β, γ, y} at {0.3, 0.3, 0.4, 3}
for APS (ρ = 0.6295) and at {0.2, 0.4, 0.4, 3} for DBLP
(ρ = 0.6316). Overall, we find that AttRank correlates at least
moderately to the STI ranking in its best setting. Further, the
significance of the attention mechanism is evident since the
best correlation is achieved when β > 0. Finally, the maximum
correlation values for β = {0, 1} are {0.581, 0.537}, for APS,
and {0.529, 0.571} for DBLP, respectively.

2) Effectiveness in terms of nDCG@50: We repeat the
effectiveness analysis, this time considering the nDCG@50
metric. We determine the parameterization that achieves the
best nDCG@50 per dataset and we find that it corresponds to
{α,β,γ,y} at {0.3,0.5,0.2,3} for APS (nDCG = 0.7293), and
{0.0, 0.1, 0.9, 1} for DBLP (nDCG = 0.9168). Again, we
observe that the attention vector plays a non-negligible role in
achieving the maximum nDCG (β > 0). Indicatively, the max-
imum nDCG@50 values for β = {0, 1} are {0.635, 0.709} for
APS, and {0.663, 0.916} for DBLP, respectively.

C. Comparative Evaluation

In this section, we compare AttRank to other approaches for
impact-based paper ranking. We select the five methods found
to be most effective in ranking by short-term impact in [7]:
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Fig. 1: Effectiveness of all methods in terms of correlation.

• CiteRank (CR). This PageRank-based method [2] cal-
culates the “traffic” towards papers by researchers that
prefer reading recent papers.

• FutureRank (FR). This time-aware method [6] combines
PageRank and HITS applying mutual reinforcement from
papers to authors and vice versa.

• Retained Adjacency Matrix (RAM). This citation count
variant uses a citation age-weighted adjacency matrix [3].

• Effective Contagion Matrix (ECM). This method op-
erates over a citation age-weighted adjacency matrix [3]
and calculates weights of citation chains.

• WSDM cup’s 2016 winner (WSDM). This method [14]
calculates paper scores as combinations of scores propa-
gated by their authors, venues, and citing papers.

The optimal parameterization for the competitors, presented
in each individual work, results from the use of particular
datasets and experimental settings, which differ among them.
Therefore, we extensively tuned all competitors, to ensure a
fair comparison of their effectiveness in ranking based on
STI.3 We ran all iterative methods with a convergence error
of 10−12, to ensure that further iterations are not expected to
change the rankings. We also present the NO-ATT, and ATT-
ONLY variants (β = 0, and β = 1), to demonstrate the effect
of the attention mechanism. Note, that we did not run WSDM
on APS, since it lacks the venue data required by the method.

Figure 1 presents the correlation of each method’s ranking
to that of the STI ranking. We vary the test ratio of the
size of networks according to Section IV-A. For each setting
we choose the parameterization with the best correlation. We
observe that AttRank better correlates to the STI ranking,
compared to all competitors increasing correlation by up to
0.057 and 0.079 compared to the best competitor, on APS and
DBLP, respectively. AttRank’s performance is due to the fact
that it does not simply promote papers recently cited, or pub-
lished, as its competitors do. Instead, its attention mechanism
promotes well-cited, recent papers, compared to lesser cited
recent papers. Moreover, AttRank promotes older papers that
are still heavily cited. The attention mechanism’s importance is
illustrated by ATT-ONLY’s performance, which is the second
best on DBLP. Most importantly, AttRank’s effectiveness is

3For a complete description of each method’s parameters and examined
settings in our evaluation, refer to the extended version of this paper [17].
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Fig. 2: Effectiveness in terms of nDCG@50.

always increased when the attention mechanism is balanced
with AttRank’s other mechanisms.

We measure the effectiveness based on the nDCG achieved
by each method with two experiments: in the first, we measure
nDCG varying the test ratio for k = 50. In the second
experiment we use the default test ratio (at 1.6) and measure
nDCG varying k. Figures 2 and 3 present the respective results.
In general we observe that AttRank is at least on par, and
mostly outperforms all rivals, losing only to ECM on DBLP
for the test ratio at 1.2 in the first experiment (albeit with
a difference less than 0.001) and to RAM for k = 5 in
the second experiment (diff. less than 0.1). Overall, AttRank
improves the nDCG@50 by up to 0.018 and 0.017 on APS
and DBLP respectively, while it improves the nDCG@k by
up to 0.017 and 0.01 on APS and DBLP, respectively. An
interesting observation from the first experiment is that as we
look further into the future (i.e., the test ratio) increases, the
nDCG achieved by all methods tends to decrease. Overall, the
best rival methods in both scenarios are RAM and ECM.

Regarding AttRank’s special cases, we observe in both
Figures 2 and 3, that excluding attention (NO-ATT) results in
a significant drop in nDCG. On the other hand, attention alone
(ATT-ONLY) can outperform many existing methods. As also
shown in the correlation experiment, AttRank achieves the best
results when it combines attention with its other mechanisms.

V. CONCLUSION

In this work, we present AttRank, a method that effectively
ranks papers based on their expected short-term impact. The
key idea is to utilize the recent attention a paper has received.
Our method models the process of a random researcher
reading papers from the literature, and incorporates an at-
tention mechanism to identify popular papers that are likely
to continue receiving citations. We studied the effectiveness
of our approach in terms of Spearman’s rank correlation and
nDCG compared to the STI rankings of papers across different
citation networks. Our findings validate the introduction of the
attention-based mechanism and demonstrate that our method
outperforms existing methods in terms of both metrics.
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