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ABSTRACT
In social networks, the phenomena of homophily and influence
explain the fact that friends tend to be similar. Social-based rec-
ommenders exploit this observation by incorporating the social
structure in collaborative filtering techniques. In practice, these
recommenders tend to make friends appear more similar compared
to non-socially aware techniques. Various proposals have demon-
strated the benefit of incorporating social connections. But at what
cost? In this work, we show that there exist users that are mistreated
in social recommenders. Specifically, their individual preferences
are suppressed more compared to other users in their social cir-
cle. We seek to identify who they are and develop techniques that
protect them, without severely affecting the effectiveness of the
recommender.
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1 INTRODUCTION
The mechanisms of homophily and social influence observed in
social networks [14], suggest that our preferences and tastes are
quite similar to those of whom we interact with in our everyday life
[3, 6, 17]. Based on this premise, several social-based recommender
systems [4, 7–13, 18, 19] seek to exploit social connections in order to
improve the recommendation accuracy, but also increase coverage,
and address the cold-start user problem.

Existing approaches in social-based recommenders extend collab-
orative filtering by enforcing similarity constraints between friends.
The most common way to enforce this is to constrain the latent rep-
resentations of users, extracted by model-based approaches such as
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matrix factorization, to be similar to those of her friends, a general
approach called social regularization [7, 11, 19].

It has been shown that social regularization indeed helps in
recommendation effectiveness. In this work, we ask at what cost.
We suspect there are specific users which are mistreated, in that
they are forced to become similar to users they would not otherwise
be. Moreover, we suspect that there exist users who become more
isolated that others, in that they tend to be more influenced by their
social circle, creating thus social echo chambers [1].

In this work, we seek to design social-based recommenders that
eliminate such phenomena. We start by identifying the types of
users that are most likely to be treated unfairly. These are the so-
call cold-start users, who have not provided as much feedback to
the system. When we look at pairs of cold-cold users we see that
they tend to be affected stronger than other pairs of users. Thus
we propose a social regularization method that explicitly protects
them.

Then, we turn our attention at what may cause social echo
chambers. To some extent similarity among friends is desirable.
What might cause echo chambers is the lack of diversity among
them. Thus we propose another regularization approach that al-
lows friends to be similar, but overall within a community it forces
members to be more diverse.

2 BACKGROUND AND RELATEDWORK
Social-based recommender systems make use of information from
two sources, the user-item rating matrix 𝑅 ∈ R𝑚×𝑛 , and the social
matrix 𝑆 ∈ R𝑚×𝑚 corresponding to the adjacency matrix of the
social network. Early work on social-based recommenders assumed
that social connections conveyed trust between users of the system.
In [12, 13], the authors propose a memory-based CF technique to
integrate trust into recommendations, which is called Trust-aware
Recommender System (TaRS). Matrix factorization (MF) techniques
first appear in [10] and in [9].

Starting with a graph induced by explicit trust statements, one
can define local and globalmetrics to quantify the trust between any
two users. The former compute a subjective measure of trust, while
the latter an objective measure of global reputation. In [13] the
same authors present detailed evaluation results of their technique,
which implements a simple local trust metric, called MoleTrust. The
proposed algorithm predicts the rating based on a user-based CF
technique, where instead of the user similarity, the user trust is
used to determine the neighborhood and weigh the ratings. In all
experiments, this technique resulted in higher accuracy (in terms
of maximum absolute error) and coverage (in terms of number of
predictable ratings) than standard user-based CF. Also, they find
that hybrid techniques based on trust and similarity, and global
trust metrics (such as PageRank) performed worse than pure local
trust-based ones.
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In [10] the authors introduce a probabilistic matrix factoriza-
tion technique for social-based recommendations, termed Social
Recommender (SoRec). As in standard matrix factorization (MF),
they decompose the ratings matrix into two 𝑑-dimensional latent
feature matrices 𝑈 ∈ R𝑑×𝑛 for the users and 𝑉 ∈ R𝑑×𝑚 for the
items, so that the predicted rating matrix is computed as 𝑅 ≈ 𝑈 ⊺𝑉 .
In addition, they assume that the social graph can be decomposed
with the same user matrix 𝑈 and a factor feature matrix 𝑍 , such
that the social matrix is given by 𝑆 ≈ 𝑈 ⊺𝑍 . Then, they derive the
matrices 𝑈 ,𝑉 , 𝑍 by minimizing an objective function similar to
standard MF, where they seek to minimize the error between 𝑆 and
𝑈 ⊺𝑍 , and 𝑅 and𝑈 ⊺𝑉 , after standard regularization. In this model,
the matrix 𝑍 is uninterpretable.

In [9] a different probabilistic MF approach is taken, termed Rec-
ommendation with Social Trust Ensemble (RSTE). In the simplest
model, they consider only recommendations from social trust rela-
tionships. The assumption is that the rating of an item 𝑗 by user 𝑖 is
generated by the weighted (according to trust levels) sum of ratings
given by/predicted for 𝑖’s friends. In other words, 𝑅 ≈ 𝑆𝑈 ⊺𝑉 , where
𝑈 , 𝑉 are similar to standard MF and are learned by minimizing the
error between 𝑅 and 𝑆𝑈 ⊺𝑉 , after standard regularization. In the
ensemble model, the actual rating is assumed to be a smoothed sum
of the standard non-social predicted rating𝑈 ⊺𝑉 and the trust-based
predicted rating 𝑆𝑈 ⊺𝑉 , i.e., 𝑅 ≈ 𝛼𝑈 ⊺𝑉 + (1 − 𝛼)𝑆𝑈 ⊺𝑉 . Note that
equivalently, one could interpret this ensemble model as the social
model where the adjacency matrix 𝑆 is modified to include 𝛼 in its
diagonal (instead of zero), indicating the level of trust to oneself,
and all other entries are scaled by 1 − 𝛼 .

The SocialMF model introduced in [4] attempts to account for
the effects of selection and homophily observed in social networks.
The former indicates that users tend to connect to like-minded peo-
ple, while the latter says that two friends develop similar interests
over time. The key idea in SocialMF is that the user feature vectors
of two friends in a MF model should be similar reflecting exactly
selection and homophily. The authors call this effect trust propa-
gation, although there is actually no propagation of trust values
in the social graph. The predicted rating is as in standard MF, i.e.,
𝑅 ≈ 𝑈 ⊺𝑉 . However, the𝑈𝑢 feature vectors should additionally en-
code the social relationships of each user 𝑢. The assumption is that
the estimate of the latent feature vector of user𝑢 is the weighted av-
erage of those of his direct neighbors, i.e.,𝑈𝑢 ≈ 𝑈𝑆𝑢 ; here vector 𝑆𝑢
contains the [0, 1] trust values of users 𝑢. Therefore, the objective
function should minimize the error between predicted and actual
rating, but also the discrepancy between the user feature matrix𝑈
and the aggregate matrix composed of the features of neighbors
expressed in matrix form as𝑈𝑆 .

In [11] the authors emphasize the difference between trust rela-
tionships and friendships, making the argument that trust-based
approaches are not suitable for social recommendations. Their in-
put is matrix 𝑆 which is the binary (un-weighted) adjacency matrix
of a given social network. However, in their models they weigh
each edge by the Pearson Correlation Coefficient (PCC) similarity of
the common ratings between the adjacent users. Therefore, one can
construct a new matrix 𝑆 ′ = 𝑆 ◦𝑄 that contains the similarities of
friends, instead of 0/1 values, where𝑄𝑢𝑣 is the PCC between users𝑢,
𝑣 , and ◦ denotes the elementwise (Hadamard) product for matrices.

Similar to the idea in [4], the goal is to constraint the feature vector
of each user to be similar to those of its friends. The first model,
which we call average social regularization, is essentially identical
to [4], and makes the assumption that the users’ feature matrix is
similar to the average feature matrix inferred from friends given
the modified matrix 𝑆 ′, i.e.,𝑈 ≈ 𝑈𝑆 ′. This is somewhat restrictive
as it forces each user’s features to be similar to the average features
of her friends. The second model, which we call individual social
regularization, relaxes this and assumes that the feature vector of
a user is similar to the feature vector of her friend to the degree
indicated by their rating similarity. Hence, for each pair of friends
𝑢, 𝑣 there is a regularization term constraining ∥𝑈𝑢 −𝑈𝑣 ∥ with a
strength equal to the rating similarity 𝑆 ′𝑢𝑣 between them.

Several variations on the basic idea of social regularization have
been proposed since then [2, 7, 15, 19]. The current state of the art
method extends the local low-rankmatrix approximation (LLORMA)
ensemble method [5] in two ways: (1) the users and items compris-
ing a local model are determined by the social network structure,
instead of user-user and item-item rating similarities, and (2) pair-
wise social regularization is employed.

3 APPROACH
Agood social-based recommender system should satisfy two desider-
ata. First, it should treat users fairly, without introducing biases for
specific types of users. Second, it should seek to avoid social echo
chambers where users’ preferences become isolated from others.
Before describing how to achieve these goals, we note that in this
work, we care about how a recommender sees or treats users. We
assume the recommender builds internal representations of users
in terms of latent factors, or embeddings, as in matrix factorization
techniques, for example. To measure the similarity of two users 𝑢, 𝑣
as seen from the perspective of the recommender, we define the
latent factor similarity, termed LF-sim, using the cosine similarity
of their latent representation normalized to [0, 1]:

LF-sim(𝑢, 𝑣) = 1
2

(
1 + 𝑈

⊺
𝑢 𝑈𝑣

∥𝑈𝑢 ∥∥𝑈𝑣 ∥

)
,

where 𝑈𝑢 ,𝑈𝑣 are the vectors of the latent factors for users 𝑢, 𝑣
respectively. LF-sim essentially controls the output of the recom-
mender: if two users have high latent factor similarity, they would
get highly similar recommendations.

3.1 Treating Users Fairly
Social-based recommenders that apply social regularization operate
on the assumption that socially connected users are like-minded.
Generally speaking they enforce specific constraints on the learning
process that discovers the latent factors of users. More precisely,
the latent factors of a user are required to be similar to those of
their friends. Through this process, the recommender sees friends
as being more similar compared to when no social structure is
considered.

To illustrate this effect, we compare the LF-sim between friends
with and without social regularization. In Figure 1, for each pair of
friends, we plot a point where the x coordinate is the LF-simwithout,
and the y coordinate is the LF-sim with social regularization. We
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Figure 1: LF-sim with and without social regularization for five social-based recommenders; Douban.
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Figure 2: LF-sim with and without social regularization for
different friendship types; Douban.
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Figure 3: Community Sizes

show the same plot for five different recommenders and for the
Douban dataset used in the experiments.

The first four recommenders implement social regularization
approaches from the literature. Specifically, S refers to average
social regularization based on the adjacency matrix 𝑆 of the social
graph, and was introduced in [4]. The regularization term is:∑

𝑢

∥𝑈𝑢 − 1
|{𝑣 ∈ 𝑆𝑢 }|

∑
𝑣∈𝑆𝑢

𝑈𝑣 ∥2,

where 𝑆𝑢 denotes the friends of 𝑢. Si is individual social regulariza-
tion based on 𝑆 , and the regularization term is:∑

𝑢

∑
𝑣∈𝑆𝑢

∥𝑈𝑢 −𝑈𝑣 ∥2 .

SQ denotes average social regularization based on matrix 𝑆 where
each term is weighted by the PCC similarity 𝑄𝑢𝑣 between a pair of
friends 𝑢, 𝑣 , introduced in [11]. The regularization term is:∑

𝑢

∥𝑈𝑢 − 1∑
𝑣∈𝑆𝑢 𝑄𝑢𝑣

∑
𝑣∈𝑆𝑢

𝑄𝑢𝑣𝑈𝑣 ∥2 .

SQi is individual social regularization based on the PCC-weighted
adjacency matrix 𝑆 ◦𝑄 , and is used in [5, 11]. The regularization
term is: ∑

𝑢

∑
𝑣∈𝑆𝑢

𝑄𝑢𝑣 ∥𝑈𝑢 −𝑈𝑣 ∥2 .

The last depicted recommender is our contribution, which we will
describe later.

Ideally, we would like social regularization to have a small and
uniform effect for all pair of friends. That translates into the points
being distributed along the diagonal. In all plots, we also depict the
linear regression line. The ideal state is achieved when this line is
the diagonal 𝑦 = 𝑥 , meaning that the social-based recommender
produces user representations that are mostly similar to what it
would produce had it no knowledge of the social structure. To assess
how far from the ideal situation a recommender is, we measure
the size of the area under the linear regression line. The area size
is shown in the center of the plots. The closer to 0.5 this size is,
the more uniform the effect of social regularization is. In contrast,
when the area has size close to 1 the recommender tends to make
friends more similar than they would be without regularization. As
seen in Figure 1, the first four recommenders tend to concentrate
LF-sim around 1, as evidenced by points appearing close to the
upper right corner and by an area size around 1. In contrast, the
last recommender appears to not suffer from this effect.

To understand how we can combat the concentration of LF-sim
around 1, we look deeper into who is stronger affected by social
regularization. We say that a user is warm if they have given more
feedback to the system than 75% of the users. Conversely, a user
is cold if they have given less feedback than 25% of the users. We
can now distinguish among three types of friendships: warm-warm
(WW), warm-cold (WC), and cold-cold (CC) friends.

Figure 2 draws the LF-sim plot considering only all pairs of
friends, and pairs belonging to each type; the recommender de-
picted is SQ, but all other existing recommenders generate similar
plots. What we observe is that the effect is stronger for cold-cold
friends, and weaker for warm-warm friends. In other words, cold-
cold friends will be treated as practically similar by the recom-
mender, even though the system only knows a few things about
their preferences. It is important to note that this happens despite



the fact that the SQ recommender explicitly regulates the effect
of regularization according to feedback similarity (PCC). That is,
two friends that have low PCC would end up having low LF-sim
without social regularization, but due to social regularization they
are forced to appear more similar.

Motivated by these observations, we want to design a social
regularization approach that maintains the benefit of existing ap-
proaches (in that they increase recommendation accuracy) but with-
out treating pairs of cold-cold friends unfairly compared to others.
We propose to apply social regularization only when there is suffi-
cient evidence, i.e., between warm-warm friends. Thus we propose
a type of average social regularization, denoted as W, that only
considers pairs of warm friends, leading to the term:∑

𝑢

∥𝑈𝑢 − 1∑
𝑣∈𝑆𝑢 𝑊𝑢𝑣

∑
𝑣∈𝑆𝑢

𝑊𝑢𝑣𝑈𝑣 ∥2,

where𝑊𝑢𝑣 is 1 when both 𝑢, 𝑣 are warm, and 0 otherwise.

3.2 Avoiding Social Echo Chambers
The aforementioned social regularization, as seen in the last plot of
Figure 1 treats friends more fairly compared to the other approaches.
However, there is another perspective that we should consider when
designing a fair social-based recommender. A recommender should
not amplify preferences and isolate users in social echo chambers.
To make this requirement more concrete, we seek to define the
social influence on an individual, capturing the degree to which an
individual is affected by its social circle.

Consider a community 𝑐 and one of its members 𝑢 ∈ 𝑐 . As dis-
cussed before, in the viewpoint of the recommender, 𝑢 is similar
to other users to the degree specified by the LF-sim metric. There-
fore, for 𝑢 we can define their LF-sim based neighborhood of most
similar users. If this neighborhood contains many other members
from 𝑐 , then we can claim the social influence of community 𝑐 on 𝑢
is high. Put in other words, if the most similar (in the eyes of the
system) users to 𝑢 are from 𝑢’s community, then this community 𝑐
has relatively high influence on 𝑢.

We formalize this with the following definition. Fix a community
𝑐 and a user 𝑢 ∈ 𝑐 . Let N𝑘 (𝑢) be 𝑢’s LF-sim neighborhood, i.e., the
set of the 𝑘 most similar, in terms of LF-sim, users to 𝑢. Then, the
community influence (CI) of 𝑐 on 𝑢 is:

CI@𝑘 (𝑢; 𝑐) = 1
𝑘
|𝑐 ∩ N𝑘 (𝑢) |,

i.e., the proportion of 𝑢’s LF-sim neighbors that are in 𝑐 . When CI
is 1, then user 𝑢 has no similar user outside their community; put
differently, community 𝑐 acts as a social echo chamber for user 𝑢.

Note that some degree of community influence is desirable, i.e., it
is likely that a user is anyway similar to some of its friends bymeans
of the homophily and social influence phenomena. To identify this
desirable degree, we can look at the community influence observed
when the recommender is agnostic of any social connections. As
with the case of LF-sim, we want to compare CI with and with-
out social regularization. Therefore, we compute the community
influence change (ΔCI) of 𝑐 to 𝑢 is:

ΔCI@𝑘 (𝑢; 𝑐) = CI@𝑘 (𝑢; 𝑐) − CI𝑤/𝑜@𝑘 (𝑢; 𝑐)

where CI𝑤/𝑜@𝑘 (𝑢; 𝑐) denotes CI without social regularization.

We now have a way (ΔCI) to quantify the degree to which a
social-based recommender is creating social echo chambers. Next,
wewant to ensure that a recommender seeks to keep the community
influence change close to zero. To achieve this, we counter-balance
the effect of social regularization. The idea is to allow friends to
have similar representations, but additionally to require that their
representations are diverse. Here diversity is with respect to the
latent representation of the community, defined as the average
representation of its members. We can thus achieve the benefit of
social regularization, in that friends are treated similarly, and avoid
echo chambers at the same time, in that members are dissimilar to
the average community member.

To achieve the goal of diversity we introduce a regularization
term, denoted as C for community diversity:∑

𝑐

∑
𝑢∈𝑐

1
2

(
1 + 𝑈

⊺
𝑢 𝑈𝑐

∥𝑈𝑢 ∥∥𝑈𝑐 ∥

)
,

where 𝑈𝑐 = 1
|𝑐 |

∑
𝑢∈𝑐 𝑈𝑢 is the community latent representation.

This C term approaches zero when each community member be-
comes distinct from the average community member, achieving the
desired behavior.

4 EVALUATION

Datasets.The first dataset we use for our evaluation, called Douban,
concerns a popular Chinese social networking service1 that allows
users to connect to each other and provide content and ratings to
movies, books, music, and events. The dataset2 contains 912,479
ratings (on a scale of 1 through 5) given by 2,874 users on 39,694
movies, and includes 48,552 bidirectional connections among the
users. The second dataset, called Epinions, concerns a Web review
site of products, where users indicate trust relationships among
them. The dataset3 contains 512,774 ratings (on a scale of 1 through
5) given by 16,564 users on 129,329 items, and includes 556,921
bidirectional connections among the users.

Methods. Our evaluation seeks to compare social regularization
techniques. For the purpose of this comparison, the underlying
recommender engine responsible for producing the latent user
representations is orthogonal. In these experiments, we employ a
basematrix factorization technique. The results of this baseline, non-
socially aware, recommender will be denoted as MF. On top of this
method, we employ the four existing social regularization methods,
discussed in Section 3 and denoted as S, Si, SQ, SQi. Moreover, we
study our own approach, denoted as W+C, which involves the W
term for fair social regularization and the C term for avoiding echo
chambers, as defined in Section 3. For all tested methods, we fix
the set of hyperparameters (batch size, learning rate, regularization
strength) to the values that optimize the performance (in terms of
RMSE) of the base matrix factorization model.

Metrics. For each social-based recommender, we measure recom-
mendation accuracy in terms of: (1) the root mean square error
(RMSE) over all predictions; and (2) themean normalized discounted
cumulative gain (nDCG) at various cut-off levels, where nDCG@k
1http://www.douban.com
2Accessed from http://smiles.xjtu.edu.cn/Download/Download_Douban.html.
3Accessed from http://www.trustlet.org/epinions.html.

http://www.douban.com
http://smiles.xjtu.edu.cn/Download/Download_Douban.html
http://www.trustlet.org/epinions.html


denotes the metric’s value when only the top-𝑘 recommendations
are considered. We evaluate the fairness and diversity of a recom-
mender by measuring LF-sim within communities, and computing
the community influence and its degree of change, as defined in
Section 3.

We also measure the novelty and diversity of users individually,
and of communities as a whole using the metrics introduced in [16].
Specifically, let 𝑑 (𝑖, 𝑗) denote a function that measures the dissim-
ilarity/distance between items 𝑖 and 𝑗 ; in this work, we choose a
content-independent approach, where𝑑 (𝑖, 𝑗) is defined based on the
cosine similarity of the latent factor vectors of 𝑖 and 𝑗 . For a user 𝑢,
let 𝑃𝑢 denote their set of recommended items, and𝑅𝑢 the set of items
they have interacted with (e.g., rated, purchased) in the past. Then,
the individual diversity for𝑢 is the average pairwise distance among
the recommended items (a.k.a. intra-list diversity [20]): 𝐼𝐷𝐼𝑉𝑢 =

1
|𝑃𝑢 | ( |𝑃𝑢 |−1)

∑
𝑖∈𝑃𝑢

∑
𝑗 ∈𝑃𝑢 𝑑 (𝑖, 𝑗). The individual novelty for 𝑢 is the

average pairwise distance between a recommended item and an
item from their history: 𝐼𝑁𝑂𝑉𝑢 = 1

|𝑃𝑢 | |𝑅𝑢 |
∑
𝑖∈𝑃𝑢

∑
𝑗 ∈𝑅𝑢 𝑑 (𝑖, 𝑗).

Now consider a community 𝑐 . Its community diversity is the av-
erage pairwise distance among the items recommended to any com-
munity member: 𝐶𝐷𝐼𝑉𝑐 = 1

|𝑃𝑐 | ( |𝑃𝑐 |−1)
∑
𝑖∈𝑃𝑐

∑
𝑗 ∈𝑃𝑐 𝑑 (𝑖, 𝑗), where

𝑃𝑐 = ∪𝑢∈𝑐𝑃𝑢 is the set of recommendations to the entire community.
Similarly, we define the community novelty for 𝑐 as the average pair-
wise distance between an recommended to some community mem-
ber and an item a community member has interacted with in the
past: 𝐶𝑁𝑂𝑉𝑐 = 1

|𝑃𝑐 | |𝑅𝑐 |
∑
𝑖∈𝑃𝑐

∑
𝑗 ∈𝑅𝑐 𝑑 (𝑖, 𝑗), where 𝑅𝑐 = ∪𝑢∈𝑐𝑅𝑢 is

the community’s interaction history.

Communities. From each dataset, we extract two types of com-
munities. EGO communities are the ego networks of the top-20
users with the most social connections. MOD communities are ex-
tracted by a greedy approach for creating communities of maximum
modularity. To draw meaningful conclusions we only keep MOD
communities of at least 10 users. The sizes of the communities are
shown in Figure 3.

Results. In the first round of experiments, we compare accuracy
and user, community diversity and novelty. Results are shown in Ta-
bles 1 for Douban; similar finding hold for Epinions. The best value
in each metric is highlighted bold; in case the second best value is
statistically close it is also highlighted. Overall, we see that social
based recommenders improve prediction accuracy (RMSE) over the
baseline recommender. However, this is not the case with ranking
accuracy (nDCG) where often the baseline has comparable or better
effectiveness. In terms of individual and community diversity, Si
and SQi perform best. For individual and community novelty, SQi
and W+C are the best. In conclusion, we see that our recommender
does not sacrifice recommendation effectiveness, while achieving
best or second-best values in novelty and diversity.

Next we calculate the LF-sim of each pairs of friends for the
communities. Results are shown in Figures 4 and 5 as boxplots
summarizing the distribution of data points. What we observe
is that all social-based recommenders, except our approach, tend
to concentrate LF-sim near 1. In contrast, our approach mimics
the distribution of LF-sim of the base recommender MF; the only
case where this does not hold completely is in the last few MOD
communities, which are very small. Overall, the median LF-sim,
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Figure 4: LF-sim for MOD communities

shown as the middle line in the box, of W+C is close to that of MF,
and considerable lower than of the other recommenders.

In the last experiment, we compute the community influence
change (ΔCI) at 𝑘 = 20 for each member of a community. Results
are shown in Tables 2 and 3. A desirable property of a social-based
recommender is to have ΔCI concentrated around zero. Among all
recommenders, our approach W+C achieves this goal better.

5 CONCLUSION
This work studied issues of fairness and diversity in social-based
recommenders. While existing social regularization techniques may
polarize users, we present two novel ideas that achieve the benefits
of increased recommendation effectiveness while treating users
more uniformly and reducing the presence of social echo chambers.
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Figure 5: LF-sim for EGO communities
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