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ABSTRACT
Location-based recommender systems learn from historical move-
ment traces of users in order to make recommendations for places
to visit, events to attend, itineraries to follow. As with other systems
assisting humans in their decisions, there is an increasing need to
scrutinize the implications of algorithmically made location recom-
mendations. The challenge is that one can define different fairness
concerns, as both users and locations may be subjects of unfair
treatment. In this work, we propose a comprehensive framework
that allows the expression of various fairness aspects, and quantify
the degree to which the system is acting justly. In a case study, we
focus on three fairness aspects, and investigate several types of
location-based recommenders in terms of their ability to be fair
under the studied aspects.
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• Information systems → Location based services; Recom-
mender systems.
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1 INTRODUCTION
More and more often nowadays machines make decisions on behalf
of humans, or assist them in their choices, across an increasingly
broad range of fields. These range from innocuous tasks, such as
what to buy in a store, to more critical decisions, such as whether
to grant a loan. It is thus natural to question the trustworthiness of
such algorithmic decisions, and worry about their implications. An
important issue to consider is fairness. Broadly speaking, fairness
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in machine-made decisions means that the machine should not dis-
criminate against individuals. There is a long line of recent research
concerning fairness in the area of machine learning [8, 22, 35, 37],
information retrieval [1, 4, 28, 33, 36], and recommender systems
[2, 3, 13, 17, 18, 21, 26, 29, 34].

Our focus is on algorithmic decisions made by Location Recom-
menders (LRs), where we study the degree to which they may cause
unfairness. It is reasonable to question whether LRs discriminate
against the users they are supposed to serve. For example, does
an LR give recommendations of lower utility to individuals from a
specific race group? Moreover, LRs have the potential to introduce
another type of unfairness that concerns the objects to be recom-
mended, i.e., places such as points/areas of interest, or sequences
thereof (e.g., routes, itineraries). In LRs, places compete against
each other for reaching the attention of the users. It is thus equally
important to investigate whether an LR promotes a healthy com-
petition for these places. For example, is a specific small business
being exposed less than a corresponding large enterprise?

In this work, we propose a simple, but powerful framework that
enables the formulation of various fairness criteria, as the aforemen-
tioned, that arise in LRs. Existing literature on recommendation
fairness is concerned with either ensuring user- or item- fairness,
e.g., as defined in [2], and fails to systematically study the area. To
the best of our knowledge, this is the first work that investigates
fairness in the domain of LRs.

To investigate a fairness criterion, the proposed framework re-
quires the specification of two components. The first is the probe
probability distribution that captures how the LR makes recommen-
dations over a period of time. For example, we may want to observe
the probability with which locations are recommended to some sen-
sitive race group (e.g., a minority), also called the protected group.
Thus, by observing the LBR recommendations to the protected
group members over some time, we can empirically calculate this
probe distribution. The second component is the target probability
distribution that prescribes how an ideal, perfectly fair LR should
behave. Continuing the example, we may want the locations to be
recommended with equal probability to the protected group as to
the non-protected. As before, by observing the LR recommenda-
tions to the non-protected users, we empirically calculate the target
distribution. We can then quantify the degree to which the LBR is
being fair, according to the desired fairness criterion, by measuring
how far from the target the probe distribution is.

We illustrate the expressiveness of our framework by formulating
three criteria that convey distinct fairness concerns: the popularity
biases of locations should not be amplified, recommendations are
agnostic to user nationalities, and recommendations should respect
prior user preferences. We then investigate them in the context of a
case study with real traces of users’ movement in the city of Vienna.
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Specifically, we implement five types of location recommenders,
and employ them to synthetically create recommendations for the
users based on their history and their current locations.We log these
recommendations over time, appropriately define probe and target
distributions for each fairness criterion, and ultimately quantify
the fairness of each LR. The objective of this case study is on the
one hand to demonstrate our framework, and on the other hand to
investigate which recommender type is more fair.

The remaining of this paper is structured as follows. Section 2
overviews methods for recommending locations, and fairness defi-
nitions and approaches for recommendations. Section 3 presents
our fairness framework for LRs, and introduces the three criteria
we study. Then, Section 4 discusses the case study and its findings.
Finally, Section 5 concludes this paper and sketches future work.

2 RELATEDWORK
Location Recommenders.We briefly overview methods that pro-
vide location recommendations, e.g., where to go next. In the sim-
plest approach, locations can be treated as items in conventional
recommenders, and hence standard collaborative filtering (CF) tech-
niques apply. The most well-known of these is matrix factorization
(MF), e.g., [14, 25] that learns a latent space in which users and items
are embedded, so as the distance (in terms of the inner product)
between a user and an item defines the degree of match between the
two. While basic MF is agnostic of spatial relationships, some meth-
ods, e.g., [5], also model geographical influence. More recent CF
techniques, e.g., [32], employ neural-network-based autoencoders
(AE) to derive embeddings for users and items.

Transitions between locations convey important information
about users’ preferences that should be exploited by an LR. There-
fore, most recent LR techniques employ sequence-aware recom-
mendation techniques [23]. The simplest of them is to use Markov
chains (MC), where the empirical transition probability between
two locations (or two location classes) is used to predict the next
location given the current, e.g., as in [19, 38]. The use of factor-
ization techniques to define personalized Markov chains has also
been proposed [15, 24]. Recurrent neural networks can also be em-
ployed to learn from the transitions among locations, e.g., as in [9];
however their effectiveness compared to conventional CF has been
questioned [11].

Another approach to learn from sequences of locations is to
apply techniques from natural language processing, treating thus
locations as words and trajectories as sentences. For example, the
well-known word2vec method [20], can be used to create a con-
textual embedding (CE) of a location based on its context (i.e., the
locations shortly before and after it in trajectories), similar to [7].
Moreover, metadata about the locations could also be utilized to
construct metadata contextual embeddings (MCE), similar to [31].
Recommendation Fairness. Fairness, as discussed in [2], may
concern the users that receive recommendations (i.e., the con-
sumers, hence C-fairness), or the items that are being recommended
(i.e., the providers/producers behind the items, hence P-fairness);
in some cases, fairness may concern both stakeholders.

In user-fairness, users may belong to protected groups, e.g., based
on their race or gender, and the broad goal is to treat these groups
equally. In one line of work [13], the focus is on demographic (a.k.a.

statistical or group) parity, where the predicted ratings of users
across groups for the same item shouldmatch. This strong condition
can be relaxed to the notion of equal opportunity [8], where, in the
context of recommenders, it means that prediction errors should
occur with the same frequency and magnitude across the groups
[34]. [3] considers top-N recommendations, and counts the number
of recommended items from some desired class of items, e.g., a
chosen genre. Fairness is achievedwhen the counts are equal among
the protected and non-protected users. The proposed approach
seeks to balance the user-neighborhood formation in collaborative
filtering, so that it assigns equal total weight to members from the
two user groups. A related goal is to achieve fairness when making
recommendations to a group of users, i.e., so as not to displease
any individual [17, 26].

In item-fairness, there may be various protected classes of items,
e.g., items provided by a particular group of people, and the broad
goal is to not discriminate against these classes. In [18], fairness
is achieved when a recommendation list covers all classes, i.e., it
contains at least one item from every (protected) class. A differ-
ent variant of item fairness is considered in [29, 30]. The goal is
to provide recommendations that have similar class distribution
with the user’s observed preferences, e.g., if a user has watched 7
romance and 3 action movies, she should get recommended about
70% romance and 30% action movies.

Our proposed fairness framework for location-based recom-
menders is flexible enough to accommodate most of the aforemen-
tioned fairness aspects. Compared to previous work, our frame-
work is not restricted into the binary user-/item- fairness classifi-
cation prevalent in the recommender systems literature, and thus
enables formulating and quantifying additional, interesting fairness
aspects.

3 FAIRNESS IN LOCATION
RECOMMENDATIONS

We consider a location recommender system (LR). In what fol-
lows, we assume that all locations belong to a predefined set L of
points/areas of interest (P/AoI). Let 𝑢 ∈ U denote an LR user, and
let 𝐻𝑢 denote her history, represented as a set of trajectories, i.e.,
sequences of timestamped locations (𝑡𝑖 , ℓ𝑖 ), where ℓ𝑖 ∈ L. Given a
set of users and their histories, the goal of the LR is to recommend
to a target user possible locations to visit next. For a target user
𝑢 at current location ℓ𝑢 , let 𝑅𝑢 denote the recommendation, i.e., a
ranked list of locations, outputted by the LR.
ObservationMatrix. Consider a set of recommendations made by
the LR over a period of time, concerning potentially multiple users.
We define the observations 𝑂 of the LR, as the matrix where entry
𝑂 [𝑢, ℓ] counts the number of times location ℓ was recommended to
user 𝑢 in the period. Note that although we ignore it, it is possible
for the observations matrix to account for the positional bias [12]
in ranked lists — a location recommended at the top of the list
is exposed more to the user than another (or the same) location
ranked fifth.

The observations matrix defines an empirical distribution over
user-location pairs. Specifically, the probability that the LR may
recommend location ℓ to user 𝑢 is 𝑃 (𝑢, ℓ) ≈ 𝑂 [𝑢,ℓ ]∑

𝑢′
∑

ℓ′ 𝑂 [𝑢′,ℓ′ ] . (In
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case positional bias is accounted for, we may say that 𝑃 (𝑢, ℓ) is the
probability with which 𝑢 is exposed to ℓ .)

In the following, we first discuss how OLAP-like operations roll-
up and slice, [6], can be applied to the observations matrix so as to
define other empirical distributions of interest. Then, we specify
the two components necessary to define various fairness criteria,
and finally discuss three of them.
Roll-Up. Users are associated with demographic factors that par-
tition them into groups G. For example, if we assume gender and
race as the factors of interest, a demographic group is black females.
Often, a certain group is identified as protected, and the goal is
to investigate whether discrimination against its members occurs.
As individuals may not fall into a single group (e.g., a mixed-race
person), we define a membership probability 𝑝 (𝑔|𝑢) to indicate the
degree user 𝑢 is a member of group 𝑔; naturally,

∑
𝑔∈G 𝑝 (𝑔|𝑢) = 1.

Similarly, locations are described by some attributes that assign
them into classes K . We assume that a location ℓ may belong to
a class ^ ∈ K with some membership probability 𝑝 (^ |ℓ); for any
location ℓ , it holds that

∑
^∈K 𝑝 (^ |ℓ) = 1. Location classes could

represent PoI categories, so that a location representing a mall, for
example, can be a member of the shopping and the entertainment
classes. Alternatively, classes could correspond to types of owner-
ship, so that a location can be classified as a small, medium, or large
enterprise, or could even correspond to business owners.

Groups and classes represent hierarchies for users and locations,
respectively. The observations matrix can be rolled-up along these
hierarchies. For a group 𝑔 and location ℓ , the corresponding en-
try of the rolled-up observations matrix is computed as 𝑂 [𝑔, ℓ] =∑
𝑢 𝑝 (𝑔|𝑢)𝑂 [𝑢, ℓ]. Similarly, we compute other roll-ups as𝑂 [𝑢, ^] =∑
ℓ 𝑝 (^ |ℓ)𝑂 [𝑢, ℓ], and 𝑂 [𝑔, ^] = ∑

𝑢

∑
ℓ 𝑝 (𝑔|𝑢)𝑝 (^ |ℓ)𝑂 [𝑢, ℓ]. More-

over, we can roll users or locations up to the top of the hierarchy. For
example, keeping locations at the highest granularity and rolling
users up to the top, we obtain 𝑂 [ℓ] = ∑

𝑔

∑
𝑢 𝑝 (𝑔 |𝑢)𝑂 [𝑢, ℓ].

Interpreting the rolled-up observations matrix as an empirical
distribution, we may reach similar conclusions as before. For exam-
ple, the probability with which a location class ^ is recommended
to a user group 𝑔 is approximately 𝑃 (𝑔, ^) ≈ 𝑂 [𝑢,^ ]∑

𝑢′
∑

^′ 𝑂 [𝑢′,^′ ] . More-
over, marginal probabilities for some location/class or user/group
can be expressed in terms of the observations matrix. For example,
the probability with which a location is recommended is 𝑃 (ℓ) ≈

𝑂 [ℓ ]∑
ℓ′ 𝑂 [ℓ′ ] .

Slice. Given a (rolled-up) observations matrix, we may potentially
focus on a specific user (or group), or an item (or class). In this case,
we slice the matrix and the observations reduce to a vector. For
example, we may want to focus on a particular minority group, and
observe what locations are being recommended by the LR.

Taking a slice provides an estimate of the conditional probability
of a user/group subject to a location/class pair, or vice versa. For
example, the probability of recommending location ℓ to a protected
group 𝑔 is approximately 𝑃 (ℓ |𝑔) ≈ 𝑂 [𝑔,ℓ ]∑

ℓ′ 𝑂 [𝑔,ℓ′ ] .

Fairness. Different concepts of fairness can be operationalized by
specifying two components. The first is the probe distribution 𝑄 ,
which can be: a joint user/group – location/class probability; a mar-
ginal user/group or location/class probability; or a conditional on

user/group or location/class probability. The probe 𝑄 is approxi-
mated from the observations matrix after performing appropriate
roll-up and slice operations. For example, we may want to express
a fairness concept that concerns what locations are recommended
to a specific group 𝑔 of users. In this case, the probe distribution is
𝑄 = 𝑃 (ℓ |𝑔), estimated from a slice of the observations matrix after
rolling users up to groups.

The second component is the target distribution 𝑇 that speci-
fies the ideal probe distribution, which captures the condition of
perfect fairness. Continuing the previous example, we define per-
fect fairness as the case when each location is equally likely to be
recommended to group 𝑔, i.e., 𝑇 is the uniform distribution over
locations.

In the ideal case when the probe 𝑄 and target 𝑇 distributions
coincide, we say that the LR is perfectly fair. In general, however,
we wish to quantify the possible deviation of the probe distribution
from the target. Dissimilarity between two distributions can be
captured by divergence measures, such as the Kullback–Leibler
divergence (KL-div) [16]. The KL-Div of 𝑄 from 𝑇 is defined as:

𝐷 (𝑄 ∥𝑇 ) =
∑
𝑥

𝑇 [𝑥] · log
(
𝑇 [𝑥]
�̃� [𝑥]

)
,

where �̃� = (1 − 𝛼) · 𝑄 + 𝛼 · 𝑇 is a smoothed version of the probe
distribution (using some small constant𝛼 , e.g., 0.001) that eliminates
non-defined values for KL-div.

The closer𝑄 to𝑇 is, the lower the KL-div is, hence the more fair
the LR is. When 𝑄 and 𝑇 coincide, KL-div becomes zero.
Fairness Criteria. The aforementioned framework is able to cap-
ture various fairness criteria that might be of interest in location-
based recommenders. In the following, we present three distinct
fairness criteria, which we further explore in our case study. The
list is only indicative of the formulations possible, and is in no way
exhaustive.

F1. Suppose we want to observe whether the LR is amplifying
existing popularity biases of locations. In this sense, an LR is seen
as fair if it does not unjustly promote some locations at the expense
of others. We consider as probe distribution that of the marginal
probability 𝑃 (ℓ) of a location being recommended; this is estimated
from the observation matrix by rolling up all users. As the target,
we calculate a prior base distribution of location popularity from
some historical traces. Given these definitions, an LR is considered
fair if, over some sufficiently long time period, it respects the prior
popularity of locations.

F2. We want to investigate whether the LR makes recommenda-
tions that are agnostic to user nationalities. We consider as probe
the conditional probability 𝑃 (ℓ |𝑔) that a location ℓ is recommended
to a particular nationality group 𝑔; the probe is estimated from the
observations by rolling users up to groups and slicing for 𝑔. As
the target, we set it to the marginal probability 𝑃 (ℓ) of a location
being recommended (the probe used in F1). In this scenario, an LR
is considered fair when locations are recommended to nationality 𝑔
with the same probability as for all users, i.e., the conditional 𝑃 (ℓ |𝑔)
matches the marginal 𝑃 (ℓ).

F3. Another fairness criterion is whether the LR respects the
prior users’ preferences, in terms of location classes. For example,
if a user group tends to visit 40% bars, 40% restaurants, and 20%



LocalRec’19, November 5, 2019, Chicago, IL, USA Leonard Weydemann, Dimitris Sacharidis, and Hannes Werthner

theaters in her past, the system should recommend locations with
the same class mix, i.e., it should be calibrated [29]. To explore F3,
we set as probe the conditional probability 𝑃 (^ |𝑔) that a location
class ^ will be recommended given group 𝑔; this is estimated from
the observations by rolling locations up to classes, users up to
groups, and then slicing for group 𝑔. For the target, we calculate the
prior location class distribution of group 𝑔 from its history. Then,
the LR is fair for group 𝑔 when it provides recommendations that
match the group’s historical preferences.

4 CASE STUDY
Section 4.1 describes the data used, the location recommenders
tested, and the evaluation methodology. Section 4.2 presents an
evaluation based on our fairness framework considering the three
criteria defined in Section 3.

4.1 Setup
Data. The data used in this study is provided by Travel Data Solu-
tion, a company that equips rooms of selected hotels in Austria with
cellular-based mobile hotspots. Hotel guests are allowed to take
these portable devices outside of the hotel to enjoy free internet
connectivity along their daily visits. In that case, the device is able to
collect anonymized location data stemming from the activity of the
guests, along with timestamps. Location coordinates are computed
from the triangulation of the cell towers the device is connected to,
and thus are quite noisy. The raw location data contains entries of
the form device-id, timestamp, latitude, and longitude. Additionally,
standard profile and demographics data is collected per device from
a questionnaire presented at sign-up. For the purposes of this study,
hotel guests/devices are the users, while their nationality is used to
define groups; we focus on the three largest groups, USA, China,
and Russia.

As raw coordinates come with considerable uncertainty, we
coarsen them based on a square grid, which is centered at the city
center (Stephansplatz), has a side length of 15km, and is partitioned
into 64 by 64 square cells. Each cell has a side length of about 230m,
and can be crossed by foot in 5 minutes. The grid cells correspond
to the locations in our framework. The classes of these locations
are compiled using Foursquare data. Specifically, for each cell we
retrieve from Foursquare all venues that are within, along with
their top-level categories. We then compute the probability distri-
bution of categories in a cell, which defines the class memberships.
There are 8 classes, corresponding to the Foursquare top-level cate-
gories: arts and entertainment, education, food, nightlife, outdoors,
professional, shop, travel.

User trajectories are processed as follows. First, we remove co-
ordinates that are outliers, using the metric proposed in [10]. We
then split a trajectory into sub-trajectories, so that a sub-trajectory
contains consecutive locations that are less than 25 minutes apart;
we empirically found the 25 minute rule to result in trajectories
that better match actual trips. Then we coarsen the trajectory based
on the grid, so that it is a sequence of timestamped locations (grid
cells), and extract trips. We are interested in trips done by foot so
we only consider trips with a mean speed of 1.4 m/s. Moreover,
we remove parts of the trips that contain transitions between non-
adjacent locations. Finally, we retain trips that contain at least 5

unique locations. The cleaned data contains 1,418 trips made by
539 users during the summer of 2019 (2019-06-01 to 2019-08-31) in
the city of Vienna.
Recommenders.We examine five different types of LRs. Given the
current user location, each system recommends a location among
the eight neighboring locations (grid cells). The LRs are trained
and tuned using the historical trips. Specifically, the historical trips
are partitioned into a training and a validation set, so that around
70% of each trip is contained in the training set. An LR is trained
on the training set, while its hyperparameters are selected using
the validation set. We defined a parameter grid to search for an
optimal combination of hyperparameters. We varied the number of
epochs between 50 and 200. The learning rate was selected from
values ranging between 0.001 and 0.5, and for the weight-decay
between 0.0001 and 0.1. For matrix factorization the latent space
dimensionality was chosen between 10, 50, and 100. The same goes
for the number of hidden layers in the autoencoder as well as the
context embedding recommenders. The context size was varied
between 2, 3 or 4; higher numbers were deemed unnecessary as
the trip length rarely exceeds 8. We chose the parameters with the
highest mean reciprocal rank.

MF. The matrix factorization LR operates on a ratings matrix,
where a “rating” represents the number of times a user has visited
the location. The latent space dimensionality is set to 10.

AE. In the autoencoder LR, a neural network with a single hid-
den layer of size 50 is used to encode and decode a user’s trips.
Specifically, the input is a vector of size 4,096 representing the
number of times each location was visited by the user.

MC. In the Markov chain LR, transitions among locations are
recorded in a transition matrix. Similar to [27], we employ skipping
to reduce the sparseness of the matrix. To make a recommenda-
tion, the transitions from the current location to each neighboring
locations are examined, and the most probable is returned.

CE. For the contextual embedding LR, we set the context size
to 2, i.e., each location is associated with a context defined by its
preceding and proceeding locations. Given its context, the neural
network learns to predict the location. The embedding dimensional-
ity is 100, and a single hidden linear layer of size 128 is used before
the output.

MCE. The metadata contextual embedding LR differs from CE in
that it also considers the class description of locations. Specifically,
for a target location, the neural network takes as input the class
descriptions of the target’s context, and learns to predict the class
description of the target. To make a recommendation, MCE returns
the neighboring location that has the highest cosine similarity to
the output class distribution. A hidden layer of size 128 is used.
Context size was set to 4.
Observations.As none of the recommenders are actually deployed,
we create a synthetic sequence of recommendations. For each trip,
we first ask for a location recommendation based on the last location
in the trip contained in the training set. The top recommendation
is then assumed to be the next current location, and a subsequent
recommendation is requested. We repeat this process for each trip
from 10 up to 100 times, which determines the observation length.
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4.2 Results
In what follows, we investigate how fair are the different LRs with
respect to the three criteria defined in Section 3.
Fairness Criterion F1. In this criterion, we assume there is a prior
distribution of popularity among locations, and want to observe
whether an LR makes recommendations following this distribution
or amplifies existing biases. We use the trips in the training set to
compute the popularity distribution of locations, which forms the
target as per our framework.

We first investigate F1 visually. Figure 1(a) depicts the popularity
distribution as a heatmap over the city; the darker the color, the
more popular a location is. This corresponds to the target distri-
bution that an LR should adhere to in order to be considered fair
according to F1. For each of tested LRs, the top (resp. bottom) row
in Figure 1(b–f) presents as a heatmap the distribution of the recom-
mended locations after observing 20 (resp. 100) recommendations
per user.

The following observations are of interest. The various recom-
menders exhibit distinct heatmap patterns. For example, compared
to the target, matrix factorization (MF) increases the popularity of
neighboring locations. In contrast, autoencoders (AE), and contex-
tual embeddings (CE and MCE) tend to emphasize certain popular
locations. The Markov Chain (MC) method appears to produce
distributions that vary the most when going from 20 to 100 rec-
ommendations per user. Overall, it appears that MF more closely
adheres to the prior popularity distribution, with AE, CE, MCE
producing more skewed distributions, and MC less skewed distri-
butions.

We next investigate F1 quantitatively. For each LR, we consider
the probe distribution at an observation length varying from 10
to 100, and compute its KL-Div with respect to the target distribu-
tion. In Figure 2, we draw the KL-Div values as a function of the
observation length. A lower KL-Div values means that the probe
distribution better matches the target distribution and thus the LR
is considered more fair. Thus, among all recommenders, MF is being
more fair with respect to the F1 fairness criterion. In contrast, MCE
is less fair with a divergence score that slightly increases as more
recommendations are observed. These findings are inline with the
observations made from the heatmaps.
Fairness Criterion F2. In the second fairness criterion we inves-
tigate, a location recommender is considered fair when different
user groups (nationalities) receive similar recommendations. The
target distribution is the marginal probability with which loca-
tions are being recommended, irrespective of the user’s group. The
probe distribution is the conditional probability of locations being
recommended to a group.

As before, we first investigate F2 visually. Figures 3, 4, and 5
depict the probe distributions as heatmaps for groups USA, China,
and Russia, respectively. A recommender is fair, according to F2,
when these heatmaps look similar across groups. Across the fig-
ures, MF appears to recommend similar places to the three groups.
In contrast, MC and MCE recommendations induce distinctively
different patterns for the groups.

The quantitative analysis of F2 verifies the aforementioned find-
ings. Specifically, for each LR, we compute the KL-Div of the three
probe distributions to the target, and report the results in Figure 6.

Recommenders MF and MC have the lowest KL-Div, but by a small
margin, and are thus considered the most fair under F2.
Fairness Criterion F3. In the last examined criterion, an LR is
considered fair if for each group it respects the prior preferences
expressed over location classes. In this case, the target distribution
is the historical distribution over classes in the group, whereas the
probe distribution is the probability with which a particular class
is being recommended.

Figures 7, 8, and 9 represent the target and probe distributions
of location classes for groups USA, China, and Russia, respectively.
In general, all methods appear to perform well in terms of the F3
fairness aspect. For the first group, MF and AE appear to better
match the target distribution, for the second group, CE, while for
the third group, AE and MF.

These conclusions are also supported by Figure 10, which depicts
the KL-Div between the target and the probe distributions for each
method and group. Overall, the AE recommender is consistently
the most fair according to F3.
Discussion. The primary goal of the case study is to demonstrate
how seemingly different fairness concerns can be expressed in a
unifying framework, and also quantified. The secondary goal is
to explore how fair various types of location recommenders can
be. While the three criteria we focus on are in no way exhaustive,
we can draw some conclusions. Specifically, among the tested rec-
ommenders, latent factor models such as MF and AE appear to be
consistently more fair than others.

5 CONCLUSION
In this work, we discussed fairness aspects that are relevant to
location-based recommenders. We argued that there can be various,
quite distinct interpretations of what a fair system means, and
that there is lack of focus in the literature in such issues. We then
propose a framework that not only allows the formulation of a wide
range of fairness concepts, but also provide the means to quantify
how fair a recommender is. Using this framework, we describe
three distinct fairness criteria, and present a thorough case study,
involving real mobility traces to investigate the degree of fairness
achieved by five types of recommenders.

An apparent direction for future research is the design of fairness-
aware location-based recommenders that aim to satisfy given fair-
ness criteria as much as possible. As fairness often comes at the
expense of utility, one must also study the associated trade-offs,
and consider methods that seek to achieve a balance between utility
and fairness.
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Figure 7: Fairness Criterion F3, Group USA: (a) Item classes histogram for the target distribution. (b–f) Item classes histograms
for the probe distributions of the five LRs.
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Figure 8: Fairness Criterion F3, Group China: (a) Item classes histogram for the target distribution. (b–f) Item classes his-
tograms for the probe distributions of the five LRs.
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Figure 9: Fairness Criterion F3, Group Russia: (a) Item classes histogram for the target distribution. (b–f) Item classes his-
tograms for the probe distributions of the five LRs.
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Figure 10: Fairness Criterion F3
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