
Noname manuscript No.
(will be inserted by the editor)

Snapshot and Continuous Points-based Trajectory Search

Shuyao Qi · Dimitris Sacharidis ·
Panagiotis Bouros · Nikos Mamoulis

Received: date / Accepted: date

Abstract Trajectory data capture the traveling history of moving objects
such as people or vehicles. With the proliferation of GPS and tracking tech-
nologies, huge volumes of trajectories are rapidly generated and collected.
Under this, applications such as route recommendation and traveling behav-
ior mining call for efficient trajectory retrieval. In this paper, we first focus
on distance-to-points trajectory search; given a collection of trajectories and
a set query points, the goal is to retrieve the top-k trajectories that pass as
close as possible to all query points. We advance the state-of-the-art by com-
bining existing approaches to a hybrid nearest neighbor-based method while
also proposing an alternative, more efficient spatial range-based approach. Sec-
ond, we investigate the continuous counterpart of distance-to-points trajectory
search where the query is long-standing and the set of returned trajectories
needs to be maintained whenever updates occur to the query and/or the data.
Third, we propose and study two practical variants of distance-to-points tra-
jectory search, which take into account the temporal characteristics of the
searched trajectories. Through an extensive experimental analysis with real
trajectory data, we show that our range-based approach outperforms previous
methods by at least one order of magnitude for the snapshot and up to several
times for the continuous version of the queries.

S. Qi, N. Mamoulis
Department of Computer Science
The University of Hong Kong
E-mail: qisy@connect.hku.hk, nikos@cs.hku.hk

D. Sacharidis
Faculty of Informatics
Technische Universität Wien, Austria
E-mail: dimitris@ec.tuwien.ac.at

P. Bouros
Department of Computer Science
Aarhus University, Denmark
E-mail: pbour@cs.au.dk

2 Shuyao Qi, et al.

Keywords Trajectory search · Continuous queries · Spatial proximity

1 Introduction

With the rapid advances in location sensing technologies on one hand, and the
widespread adoption of social networking services on the other, the amount
of data capturing people’s interaction between the physical and digital world
is constantly increasing. People nowadays continuously leave behind digital
trails of their activities, either explicitly by recording their location over time,
e.g., their hike, run, ride, or implicitly by publishing geotagged content, e.g.,
tweets, check-ins, photo uploads. In their most primitive form, such trails can
be viewed as trajectories, i.e., sequences of spatiotemporal points.

Searching and filtering a large collection of trajectories finds several ap-
plications, including route recommendation, behavior mining, and in trans-
portation systems [23,27]. Different from conventional shape-based retrieval
task that identifies trajectories similar to a given, or range-based retrieval
that selects those that cross a specific spatial region, in this paper we focus
on points-based search, which retrieves trajectories based on given points. In
particular, taking as input a set of query points Q (e.g., a particular set of
POIs), the distance-to-points trajectory search studied in [2,18] retrieves the
trajectories that pass as close as possible to all query points. The distance of
a trajectory t to Q is computed by summing up, for each query point q ∈ Q,
its distance to the nearest point in t.

t1

10:00

10:00

11:00

11:30

12:00
13:00

t2

Fig. 1 Example of two touristic trajectories in London.

As a motivating example, consider the collection of touristic trajectories
in the city center of London in Figure 1. A travel agency issues a distance-to-
points query to survey or recommend routes that pass close to three popular
sightseeing attractions, the British Museum, the London Eye and the Tower
Bridge; under this task, trajectory t1 is preferred over t2. As another example,

Snapshot and Continuous Points-based Trajectory Search 3

query set Q could contain traffic congestion points; in this case, the traffic
department seeks to discover the causes of the congestion by analyzing the
trajectories that pass near the points in Q. In the context of surveillance and
security applications, Q may contain locations of crime scenes, and hence the
police department issues a distance-to-points query to investigate the correla-
tion of these crime locations by identifying suspects who moved close to all of
them.

Contributions. This paper contributes to points-based trajectory search in
three directions. First, we thoroughly study the efficient evaluation of distance-
to-points trajectory search. We review in detail existing algorithms IKNN [2]
and GH/QE [18]. These methods follow a candidate generation and refinement
paradigm, and invoke a nearest neighbor (NN) search centered at each query
point to examine the trajectories in ascending order of their distance to Q. By
analyzing the pros and cons of these methods, we design a hybrid NN-based
algorithm which consistently outperforms IKNN and GH/QE by over an order
of magnitude. Going one step further, we tackle the inherent shortcomings
of the NN-based approach itself, namely (i) the increased I/O cost due to
independently running multiple NN searches and (ii) the increased CPU cost
for continuously maintaining a priority queue for each NN search. We propose
a novel spatial range-based approach, which is up to 2 times faster than our
hybrid algorithm.

Previous work in [2,18] approached points-based trajectory search as an
one-time or a snapshot query. As our second line of work, we introduce con-
tinuous distance-to-points trajectory search, where the query is long-standing
and the result set must be maintained whenever updates to the query param-
eters and/or the data occur. Such a task finds application in data exploration
scenarios for example, where the user is not fully aware in advance of the in-
volved query parameters (e.g., the POIs); instead, she actually explores the
trajectories in a interactive manner and the answer to one query leads to the
formulation of the next. A straightforward solution to continuous distance-to-
points trajectory search is to issue a new snapshot query for each occurred
update, and then compute the new results from scratch. Naturally, such a so-
lution is expected to perform poorly in practice. Instead, we introduce a con-
tinuous counterpart to all NN-based and spatial range-based methods which
resume from their previous state and accordingly update the result set. Our
tests demonstrated both the efficiency of this incremental approach and the
superiority of the continuous spatial range-based evaluation, similar to case of
the snapshot distance-to-points trajectory search.

Finally, we observe that the distance-to-points search ranks trajectories
solely on how close they pass to the query points in Q, ignoring however other
qualitative characteristics of the retrieved results. To fill this gap, we introduce
a practical variant that also takes into account the temporal aspect of the
trajectories. Specifically, the span-bounded distance-to-points search filters out
non-interesting trajectories, whose points closest to Q span a time interval
greater than a user-defined threshold. Returning to the example of Figure 1,

4 Shuyao Qi, et al.

t2 is now preferred over t1 because the travel agency is interested in trajectories
that take at most 2 hours to approach the given points of interest. In addition,
we also investigate another variant named span & distance-to-points search,
where the trajectories are ranked both on their distance to the query points
and the time interval they span. For all variants, we also consider their order-
aware counterparts, where Q is a sequence of query points instead of a set,
as well as their continuous query counterparts. We note that the snapshot
versions of all points-based trajectory search variants were first presented in a
previous work of ours [15].

Outline. The rest of the paper is organized as follows. Section 2 formally de-
fines the distance-to-points trajectory search and presents our NN-based and
spatial range-based methods. Then, Section 3 investigates the efficient evalua-
tion of the continuous distance-to-points trajectory search. Section 4 formally
introduces and addresses the span-bounded distance-to-points and the span
& distance-to-points search variants, as well as order-aware counterparts. Sec-
tion 5 presents our experimental analysis. Finally, Section 6 outlines related
work, while Section 7 concludes the paper.

2 Distance-to-Points Trajectory Search

We first investigate trajectory search based on the distance to a set of query
points. Section 2.1 formally defines this distance-to-points search while Sec-
tion 2.2 revisits existing work for its evaluation. Next, Sections 2.3 and 2.4
present our novel NN-based and spatial range-based evaluation methods, re-
spectively.

2.1 Problem Definition

Let T be a collection of trajectories. A trajectory in T is defined as a sequence
of spatio-temporal points {p1, . . . , pn}, each represented by a 〈latitude, longitude,
timestamp〉 triple. The input of distance-to-points trajectory search over collec-
tion T is a set of m spatial query points Q = {q1, . . . , qm}. Given a query point
qj ∈ Q and a trajectory ti ∈ T , we define the 〈p∗ij , qj〉 matching pair based on
the nearest to qj point p∗ij of trajectory ti, i.e., p∗ij = arg minp∈ti dist(p, qj),
where dist(·, ·) denotes the distance (e.g., Euclidean) between two points in
space. We then define the distance of a trajectory to Q based on the matching
pairs for every query point qj as:

dist(ti, Q) =
∑
qj∈Q

dist(p∗ij , qj) (1)

Consider the example in Figure 2(a), where query points are represented
as diamonds, and trajectory points as circles; filled circles indicate matched
points of the trajectory to query points. For trajectory t1, point p∗11 is its

Snapshot and Continuous Points-based Trajectory Search 5

t1

t2

t3

t4

q1

q2

q3

p⇤11 p⇤12

p⇤13

p⇤22

p⇤23

p⇤41

p⇤42

p⇤43

p⇤32 p⇤33

p⇤21

Fig. 2 Distance-to-points trajectory search with 4 trajectories, T = {t1, . . . , t4}, and 3
query points, Q = {q1, . . . , q3}; t1, t2 is the result to the 2-DTS(T,Q) query.

closest point to query point q1, and hence 〈p∗11, q1〉 represents a matching pair.
The other matched trajectory points of t1 are p∗12 and p∗13. Note that it is
possible for a trajectory point to be matched with multiple query points. This
is the case with trajectory t3, where p∗32 is the closest point to both q1 and q2,
i.e., p∗31 ≡ p∗32.

We now formally define the distance-to-points trajectory search problem [2,
18].

Problem 1 (Distance-to-Points Trajectory Search) Given a collection
of trajectories T and a set of query points Q, the k-Distance-to-Points Tra-
jectory Search, denoted by k-DTS(T,Q), retrieves a subset of k trajectories
R ⊆ T such that for each t ∈ R and t′ ∈ T rR, dist(t, Q) ≤ dist(t′, Q) holds.

Returning to the example of Figure 2(a), trajectory t1 has the lowest distance
to Q, followed by t2, t3 and t4; hence, the result to 2-DTS(T,Q) contains
trajectories t1, t2.

2.2 Existing Methods

Methods IKNN [2] and GH/QE [18] have previously tackled distance-to-points
trajectory search. Note that in [2] the problem was defined with respect to
the similarity of a trajectory ti to the set of query points Q, defined as
sim(ti, Q) =

∑
qj∈Q e

−dist(p∗ij ,qj). In what follows, we describe the straightfor-

ward adaptation of the IKNN algorithm for the distance metric of Equation (1)
(which was also used in [18]). The adaptation of GH/QE and our methods (Sec-
tions 2.3 and 2.4) to the similarity metric of [2] is also straightforward and
therefore, omitted. Moreover, the relative performance of all methods is iden-
tical and independent of the metric used.

All existing methods adopt a candidate generation and refinement evalu-
ation paradigm. During the first phase, a set of candidate trajectories C is
determined by incrementally retrieving the nearest trajectory points to the
query points in Q. For this purpose, the methods utilize a single R-tree to
index all trajectory points. A candidate trajectory t is called a full match if

6 Shuyao Qi, et al.

Algorithm 1: IKNN
Input : collection of trajectories T , set of query points Q, number of results k
Output : result set R
Variables : candidate set C, k-th distance upper bound UBk, distance lower

bound LB
1 initialize C ← ∅, UBk ←∞ and LB ← 0;
2 while UBk > LB do
3 for each qj ∈ Q do
4 δj-NN(qj)← the next δj nearest trajectory points to qj ;
5 update C with δj-NN(qj);
6 update UBk and LB; . Equations (2) and (3)

7 R← RefineDTS(k, T,Q,C);
8 return R;

the matching pairs of t to all query points in Q have been identified; otherwise,
t is a partial match. As soon as the candidate set is guaranteed to include the
final results (even as partial matches), candidate generation is terminated, and
the refinement phase is then employed to identify and output the results.

In what follows, we detail the candidate generation phase for each method
and then, briefly discuss the shared refinement phase.

The IKNN Algorithm. Note that the IKNN algorithm comes in two flavors; in
the following, we consider the one based on best-first nearest neighbor search
[7], as it was shown in [2] to be both faster and require fewer I/O opera-
tions. Algorithm 1 shows the pseudocode of IKNN. During candidate genera-
tion (Lines 2–6), the algorithm iterates over the points of Q in a round robin
manner. For each query point qj , the (next) batch of nearest to qj trajectory
points is retrieved using the R-tree index, in Line 4. The nearest neighbor
search retrieves a different number of trajectory points δj per query point qj ,
in order to expedite the termination of this first phase (details in [2]). Based
on the newly identified matching pairs that involve qj , the set of candidates
C is then updated in Line 5 by either adding new partial matches or filling an
empty slot for existing. For each partial match ti in C, IKNN computes an up-
per bound of its distance to Q by setting the distance of ti to every unmatched
query point equal to the diameter of the space (maximum possible distance
between two points): 1

dist(ti, Q) =
∑
qj∈Qi

dist(p∗ij , qj) + |QrQi| ·DIAM, (2)

where set Qi ⊆ Q contains all the query points already matched to a point in
trajectory ti. We denote by UBk the k-th smallest among the distance bounds
for the trajectories in C. In addition, IKNN computes a lower bound LB of the
distance to Q for all unseen trajectories (i.e., those not contained in C), by
aggregating the distance of the farthest (retrieved so far) trajectory point to

1 Under the similarity-based definition of DTS in [2], IKNN sets empty “slots” to 0.

Snapshot and Continuous Points-based Trajectory Search 7

Algorithm 2: GH
Input : collection of trajectories T , set of query points Q, number of results k
Output : result set R
Variables : candidate set C, global heap H

1 initialize C ← ∅ and H ← ∅;
2 while C contains less than k full matches do
3 pop 〈pij , qi〉 from H; . Get the globally nearest trajectory point to some

query point

4 update C with 〈pij , qi〉;
5 push to H the next nearest trajectory point to qi;

6 R← RefineDTS(k, T,Q,C);
7 return R;

Algorithm 3: QE
Input : collection of trajectories T , set of query points Q, number of results k
Output : result set R
Variables : candidate set C, global heap H, distance lower bound LB

1 initialize C ← ∅, H ← ∅ and LB ← 0;
2 while C contains less than k full matches with dist(·, Q) ≥ LB do
3 pop 〈pij , qi〉 from H; . Get the globally nearest trajectory point to some

query point

4 update C with 〈pij , qi〉;
5 push to H the next nearest trajectory point to qi;
6 complete the most promising partial matches in C; . Equation (4)

7 update LB; . Equation (5)

8 R← RefineDTS(k, T,Q,C);
9 return R;

each query point in Q. Formally:

LB =
∑
qj∈Q

dist(pδj , qj) (3)

where pδj is the last trajectory point returned by the NN search centered at qj .

The candidate generation phase of IKNN terminates when UBk ≤ LB;
in this case, none of the unseen trajectories can have smaller distance to Q
compared to the candidates in C. Last, IKNN invokes RefineDTS to produce
the results.

The GH/QE Algorithms. Different from IKNN, the methods in [18] retrieve
trajectory points in ascending order of the distance to their closest query
point. Specifically, a global heap H is used to retrieve at each iteration the
globally nearest trajectory point pij to some query point qj , and then, to
update candidate set C, accordingly. Algorithm 2 shows the pseudocode of
GH. The candidate generation phase of GH terminates as soon as set C contains
k full matches (proof of correctness in [18]). Note that these full matches are
not necessary among the final results identified in Line 6 during the refinement
phase.

8 Shuyao Qi, et al.

In practice, the order imposed by global heap H cannot guarantee a good
performance unless both trajectory and query points are uniformly distributed
in space. For instance, if a particular query point is very close to many trajec-
tories, GH will generate a large number of partial matches with only that slot
filled. Consequently, it will take longer to produce the k full matches needed
to terminate the generation phase, and at the same time a large number of
candidates would have to be refined. A similar problem occurs when a query
point is located away from the trajectories.

To address these issues, Tang et al. [18] proposed an extension to GH termed
QE, which periodically fills the empty slots for the partially matched trajecto-
ries with the highest potential of becoming results. These are then retrieved
from disk, and their actual distance is computed. A trajectory has high po-
tential if it has (i) few empty slots and (ii) small distance in each filled slot
with respect to the next point to be retrieved for that slot. These factors are
captured respectively by the denominator and enumerator of the following
equation:

potential(ti) =

∑
qj∈Qi

(
dist(pHj , qj)− dist(p∗ij , qi)

)
|QrQi|

(4)

where set Qi ⊆ Q contains all the query points already matched to a point in
ti, p

H
j is the next nearest trajectory point to qj contained in heap H and p∗ij

is the nearest to qj point in trajectory ti.
Algorithm 3 shows the pseudocode of QE. The candidate generation phase

of QE terminates when candidate set C contains k full matches (similar to
GH), provided however that their distance to Q is smaller than the distance
of all unseen trajectories (Line 2) (proof of correctness in [18]). To determine
this, QE computes in Line 7, a lower bound LB of the distance for the unseen
trajectories (similar to IKNN) by aggregating the distance of the next nearest
trajectory point to every query point, i.e., the contents of heap H:

LB =
∑
qj∈Q

dist(pHj , qj) (5)

Refinement. Procedure 1 illustrates a high-level pseudocode of the refine-
ment phase employed by all the methods. Briefly, the RefineDTS procedure
examines the trajectories inside the candidates set C in ascending order of a
lower bound dist(·, Q) on their distance to the query points in Q. For a full
match ti, we have dist(ti, Q) = dist(ti, Q) while for a partial match the dis-
tance of ti to every unmatched query point qi is set similarly to computing
distance bound LB:

dist(ti, Q) =
∑
qj∈Qi

dist(p∗ij , qj) +
∑
qj /∈Qi

dist(plbj , qj) (6)

where set Qi ⊆ Q contains all the query points already matched to a point
in trajectory ti, and plbj is either the last trajectory point returned by the

Snapshot and Continuous Points-based Trajectory Search 9

Procedure 1: RefineDTS

Input : number of results k, collection of trajectories T , set of query points Q,
candidate set C

Output : result set R
Variables : k-th distance UBk in R

1 sort C by lower bound dist(·, Q) in ascending order; . Equation (6)

2 for each candidate trajectory ti ∈ C do
3 if |R| = k and dist(ti, Q) ≥ UBk then
4 break; . Result secured

5 compute dist(ti, Q);
6 if |R| < k or dist(ti, Q) < UBk then
7 update R with ti and update UBk;

8 return R;

NN search centered at qj for IKNN, i.e., plbj ≡ pδj of Equation (3), or the

corresponding trajectory point inside heap H for GH/QE, i.e., plbj ≡ pHj of
Equation (5). Each examined trajectory ti is retrieved from disk and its actual
distance dist(ti, Q) to query set Q is computed. RefineDTS keeps track of the
k-th distance to Q computed so far, denoted by UBk, and terminates as soon
as the lower distance bound of current trajectory exceeds or equals UBk, i.e.,
when dist(ti, Q) ≥ UBk.

2.3 A Hybrid NN-based Approach

The DTS problem can be viewed as a top-k query [3,8]. For each query point qj ,
consider a sorted trajectory list Tj , where each trajectory is ranked according
to its distance to the query point. Then, the objective is to determine the
top-k trajectories that have the highest aggregate score, i.e., distance, among
the lists. However, as these lists are not given in advance and constructing
them is costly, the goal is to progressively materialize them, until the result is
guaranteed to be among the already seen trajectories.

Following the top-k query processing terminology, a sorted access on list
Tj corresponds to the retrieval of the next nearest trajectory to query point qj ,
which in turn may involve multiple trajectory point NN retrievals. In contrast,
a random access for trajectory ti on list Tj corresponds to the retrieval of
ti from disk and the computation of its distance to qj ; in practice, once ti
is retrieved, its distance to all query points can be computed at negligible
additional cost.

Methods IKNN, GH and QE employ various ideas from top-k query process-
ing (an overview of this field is presented in Section 6). Particularly, IKNN

performs only sorted accesses and prioritizes them in a manner similar to
Stream−Combine [5]. Similarly, GH performs only sorted accessses but follows
an unconventional strategy for prioritizing them, which explains its poor per-
formance on our tests in Section 5. On the other hand, QE additionally performs
random accesses following a strategy similar to the CA algorithm [3] to select
which trajectory to retrieve.

10 Shuyao Qi, et al.

In the following, we present a nearest neighbor-based algorithm termed
NNA, which combines the strengths of IKNN and QE. In short, it builds upon
the Quick−Combine top-k algorithm [6] performing both sorted and random
accesses to generate the candidate set. NNA has the following features. First,
similar to IKNN, the algorithm retrieves in a round robin manner, batches of
nearest trajectory points to each query point in Q. This addresses the weak-
nesses of GH when dealing with non-uniformly distributed data. Second, after
performing the nearest neighbor search centered at each query point, NNA fills
the slots of the trajectories with the highest potential according to Equa-
tion (4), similar to QE. Finally, NNA employs the termination condition of IKNN
for the candidate generation phase. In practice, NNA extends Algorithm 1 by
completing the most promising partial matches in C (similar to QE), between
Lines 5 and 6. Hence, it is able to compute tighter bounds compared to IKNN

and thus terminate the generation phase earlier. In addition, it produces fewer
candidates than IKNN, reducing the cost of the refinement phase.

2.4 A Spatial Range-based Approach

We identify two shortcomings of all the NN-based methods previously de-
scribed. First, each NN search is implemented independently, which means
that R-tree nodes and trajectory points may be accessed multiple (up to |Q|)
times, which increases the total I/O cost. Second, each NN search is associated
with a priority queue, whose continuous maintenance increases the total CPU
cost.

Our novel Spatial Range-based algorithm, denoted by SRA, addresses both
these shortcomings. Similar to the NN-based approaches, it follows a gener-
ation and refinement paradigm. However, to generate the candidate set, it
issues a spatial range search of expanding radius centered at each query point
in Q. All searches operate on a common set N of R-tree nodes, which avoids
accessing nodes more than once and hence saves I/O operations. Moreover,
set N needs not be sorted according to any distance, eliminating costly prior-
ity queue maintenance tasks. The range-based search for each query point qj
is associated with current radius rj , and is also assigned a maximum radius
θj . As the algorithm progresses, current radius rj increases while maximum
radius θj decreases. Candidate generation terminates as soon as rj > θj for
some query point qj .

Algorithm 4 shows the pseudocode of SRA. In Lines 2–4, SRA initializes the
current and maximum radius for each query point. For the latter, an upper
bound UBk to the k-th smallest distance to Q is computed. In particular, SRA
invokes a sum-aggregate nearest neighbor (sum-ANN) procedure [13] retriev-
ing trajectory points in ascending order of

∑
qj∈Q dist(·, qj). Assuming that

this procedure retrieves point pi of trajectory ti, the sum-aggregate value is
an upper bound to the distance of ti, i.e., dist(ti) ≤

∑
qj∈Q dist(pi, qj). Hence,

once points from k distinct trajectories have been retrieved, SRA can determine
a value for UBk.

Snapshot and Continuous Points-based Trajectory Search 11

Algorithm 4: SRA
Input : collection of trajectories T , set of query points Q, number of results k
Output : top-k list of trajectories R
Variables : candidate set C, k-th distance upper bound UBk, current ri and

maximum θi search radius for each qi ∈ Q, set of R-tree nodes N
1 initialize C ← ∅ and N ← R-tree root node;
2 compute UBk invoking a sum-ANN(T,Q);
3 for each qj ∈ Q do
4 initialize rj ← 0 and θj ← UBk;

5 while rj ≤ θj for all qj ∈ Q do
6 select current qc;
7 rc ← rc + ξ; . Increase rc to expand search around qc
8 expand from N all nodes that intersect with the disc of radius rc centered at qc;
9 S ← trajectory points within spatial range rc found during expansion;

10 update C with S;
11 update UBk; . Equation (7)

12 for each qj ∈ Q do
13 update θj ← UBk −

∑
q`∈Qr{qj} r`; . Reduce maximum radius

14 R← RefineDTS(k, T,Q,C);
15 return R;

During the candidate generation phase in Lines 5–13, SRA first selects the
query point qc ∈ Q with the fewest retrieved points so far, and increases its
radius by a fixed ξ, so that each location retrieves more or less the same
number of points.2 Then, it extends the range search centered at qc to new
radius rc. In particular, all nodes in N that intersect with the search frontier
are expanded, i.e., replaced by their children (Line 8). During the expansion,
all trajectory points within the frontier are collected in set S (Line 9). Upon
completion of the expansion, set N contains no R-tree node or point within rc
distance to qc, or with distance to qc greater than θc, and N will be re-used
in further iterations.

After the expansion, SRA uses the newly seen trajectory points in S to
properly update candidate set C. Note that for each trajectory ti in C, SRA
keeps |Q| slots storing the closest trajectory points ti.pj seen so far to each
query point qj . A slot is marked matched if the corresponding matching pair
has been determined, i.e., when ti.pj ≡ p∗ij . SRA in Line 10 performs the
following tasks for each point px in S; let ti be the trajectory px belongs to.
For each slot qj that is not matched, SRA checks whether px is closer to qj than
ti.pj , and updates the slot with px if true. If the slot for the current query point
qc was among those examined, it is marked as matched. The benefits of this
update strategy are twofold. First, it guarantees that no matching trajectory
point will be missed, even though SRA does not access px again (removed from
N) for qj 6= qc. At the same time, it also helps to derive a tighter upper bound

2 In the future, we plan to investigate variable ξj values based on current radius rj and
the trajectory point density around qj , inspired by determining δj value in [2].

12 Shuyao Qi, et al.

for the distance of ti:

dist(ti, Q) =
∑
qj∈Qi

dist(p∗ij , qj) +
∑

qj∈QrQi

dist(ti.pj , qj). (7)

Compared to Equation (2) utilized by IKNN and NNA, Equation (7) computes
a tighter bound on unmatched slots. Based on these bounds, a tighter value
for UBk can be established (Line 11).

To better explain the procedure in Line 10, we use the example of Fig-
ure 2(a) for k = 2. SRA has just started and thus C is empty. Assume that the
current query point is qc = q1, and let r1 = 0+ξ be the radius of the shaded disk
depicted in the figure. As a result, set S in Line 9 contains trajectory points
{p∗21, p∗22, p∗41}. Moreover, candidate set C contains t2 and t4. For trajectory t2,
p∗21 is settled as the matching point to q1 because dist(p∗21, q1) < dist(p∗22, q1)
and no unseen point of t2 can be closer. On the other hand, the matching points
to q2, q3 cannot be yet determined, but we can use p∗21 and p∗22 to bound t2’s
distances to q2 and q3. Therefore, the slots for t2 become 〈p∗21, p∗22, p∗21〉, where
bold indicates a matched slot. Moreover, an upper bound to the distance of
t2 is determined as dist(t2, Q) = dist(p∗21, q1) + dist(p∗22, q2) + dist(p∗21, q3).
Similarly, we obtain the slots for t4 as 〈p∗41, p∗41, p∗41〉.

As a last step, SRA updates the maximum radius for all query points with
respect to the new UBk in Lines 12–13. Observe that SRA’s termination con-
dition for candidate generation is essentially identical to that of IKNN. Any
trajectory not in the candidate set C must have distance to each qj at least
θj , and thus distance at least equal to LB =

∑
qj∈Q θj . The termination con-

dition of Line 5, rj > θj for some qj , and the update of θj , imply that, when
candidate generation concludes, UBk ≤ LB.

Finally, the performance of SRA can be enhanced following the key idea of
QE to further improve the dist(tj , Q) bound and therefore, UBk. We denote
this extension to the SRA algorithm by SRA+. Specifically, in between Lines 10
and 11 in Algorithm 4, SRA+ fills the empty slots of the trajectories in C with
the highest potential as computed using Equation (4).

3 Continuous Distance-to-Points Trajectory Search

The previous section approached distance-to-points trajectory search as a
snapshot (one-time) query. In this section, we investigate the case when the
search is continuous (long-standing) and the result set R must be maintained
whenever updates to the query and/or the data occur. In particular, we con-
sider three types of updates: (i) increase/decrease the number of results k, (ii)
insert/delete a trajectory and (iii) insert/delete a query point. To efficiently
evaluate continuous distance-to-points trajectory search, we introduce a con-
tinuous counterpart to each of IKNN/NNA, GH/QE and SRA/SRA+; the idea is to
resume a DTS algorithm from its previous state and accordingly update result
set R. The execution of all continuous algorithms go over the same three phases

Snapshot and Continuous Points-based Trajectory Search 13

which essentially extend the candidate generation and refinement evaluation
paradigm.

Phase 1: State update. The algorithm updates its current state according to
the occurred update.

Phase 2: Candidate generation. If necessary, the main loop of candidate gen-
eration is resumed to include additional trajectories in candidate set
C. The algorithm enters Phase 2 if the termination condition for
candidate generation is not met (Line 2 in Algorithms 1, 2, 3 and
Line 5 in Algorithm 4).

Phase 3: Refinement. If necessary, the algorithm refines candidate set C to
update result set R.

Before discussing in detail every continuous algorithm, we briefly outline how
the various update types affect the phases to be executed and result set R.

Increase k. With this update, additional trajectory results are requested. A
continuous DTS algorithm may enter Phase 2 to retrieve additional candidates
until the termination condition of candidate generation is met. In any case,
the algorithm enters Phase 3 to further refine candidate set C and produce
the updated result set R.

Decrease k. With this update, fewer results are requested, which makes the
maintenance of result set R straightforward. Phase 2 is not necessary as the
algorithm already has the appropriate number of candidate trajectories, while
Phase 3 performs no refinement; the algorithm needs only to truncate the
previous result set. This trivial case of update will not be further discussed.

Insert qnew. In this case, results with respect to an additional new query
location are requested, i.e., qnew is added to set Q. Hence, a new slot has to be
accounted for, which means that the algorithm may enter Phase 2 to identify
additional candidates and Phase 3 to refine the updated candidates set C.

Delete qold. With this update, an existing location is no longer relevant to the
DTS query, i.e., qold is removed from set Q. The qold slot disappears, which
may force a continuous DTS algorithm to enter Phase 2 to produce additional
candidates. In any case, refinement in Phase 3 is required.

Insert tnew. In this case, a new trajectory tnew is added to collection T . A
continuous DTS algorithm treats tnew as a full match; i.e., all its matching
pairs are immediately identified and tnew is inserted to candidate set C. The
algorithm does not enter Phase 2 as set C still contains enough candidates,
while Phase 3 does not need to refine the candidate trajectories. The updated
result R can be obtained by potentially evicting the previous k-th result to
include tnew.

Delete told. With this update, an existing trajectory told is removed from
collection T . Note that the case when told was never part of candidate set C
is trivial and hence will not be further discussed. Otherwise, the algorithm

14 Shuyao Qi, et al.

enters Phase 2 to retrieve additional candidates and Phase 3 to refine set C
only if the told trajectory was part of the result set R.

3.1 Algorithms IKNN and NNA

The state of the continuous IKNN/NNA algorithms includes the result set R, the
candidate set C, the upper bound dist(ti, Q) of the distance to the set Q for
all ti ∈ C, and bounds UBk and LB.

Increase k. In Phase 1 where the state of the algorithms is updated, only
the upper bound UBk must be updated (due to the new value of k). Then,
IKNN/NNA enter Phase 2 (Lines 2–6 of Algorithm 1) to identify additional
candidate trajectories only if the updated UBk is smaller than the unaffected
lower bound LB. Nevertheless, refinement must be executed in Phase 3 to
identify the additional required results. Note that RefineDTS does not run
from scratch; in practice, the procedure examines only the new candidates
to determine whether they can be part of the result set R, based on their
dist(·, Q), and then, computes dist(·, Q), if needed.

Insert qnew. In Phase 1, a new unmatched slot is created for each candidate
trajectory. Consequently, the upper distance bound dist(t, Q) for each trajec-
tory t ∈ C is incremented by the DIAM term based on the qnew slot. Upper
bound UBk is also incremented by the same term, while lower bound LB re-
mains the same. As a result, IKNN/NNA (almost certainly) enter Phase 2 with
the primary goal of filling the slots for qnew. Thus, the algorithms invoke a
NN search around qnew and retrieve roughly as many points were retrieved
by the NN search for each of the other slots. At this point, if the termination
condition UBk ≤ LB for candidate generation is still not met, the algorithms
proceed retrieving trajectory points from all query points in a round robin
manner, similar to Algorithm 1. Finally, Phase 3 is always executed to refine
the candidate set C and construct result set R.

Delete qold. In Phase 1, the slot for query point qold disappears from each
candidate trajectory. Hence, the upper distance bound dist(t, Q) of each tra-
jectory t ∈ C is appropriately decreased and as a result, the upper bound
UBk also decreases. Similarly, the LB lower bound has one term less and
thus decreases. However, bound UBk could decrease less than LB does, which
means that the termination condition for candidate generation may not hold
and therefore, IKNN/NNA should enter Phase 2. Nevertheless, the algorithms
enter Phase 3 for refinement.

Insert tnew. In Phase 1, the new trajectory tnew is inserted in candidate set C
as a full match, i.e., the points on tnew are examined to determine the match-
ing pairs for every qi ∈ Q, and to compute the exact distance dist(tnew, Q).
Then, IKNN/NNA compare and update (if needed) current upper bound UBk
with dist(tnew, Q). As already discussed, Phase 2 is not necessary while the
algorithms enter Phase 3 only if UBk has changed; in that case, RefineDTS

Snapshot and Continuous Points-based Trajectory Search 15

does not run from scratch as the updated result set is immediately constructed
by evicting the previous k-th result and inserting tnew.

Delete told. In Phase 1, the algorithms update (specifically increase) upper
bound UBk only if the removed trajectory told was contained in the result set
R. In that case, IKNN/NNA also enter Phases 2 and 3.

3.2 Algorithms GH and QE

The state of the continuous GH/QE algorithms includes the result set R, the
candidate set C, the global heap H and in case of QE, also the lower bound
LB.

Increase k. In Phase 1, the state of the algorithms needs no update as none
of R, C, H or LB is directly related to the number of results k. However, as
candidate set C now contains less than k full matches, GH/QE enter Phase 2
(corresponding to Lines 2–5 of Algorithm 2 for GH and Lines 2–7 of Algorithm 3
for QE), and subsequently, Phase 3 to refine the updated set of candidates.

Insert qnew. During Phase 1, a new empty slot is created for each candidate
trajectory and consequently, the global heap H is updated in order to an-
ticipate the new NN search centered at qnew. Then, GH/QE enter Phase 2, to
perform the NN search for qnew, and possibly expand the search around other
query points as necessary. Ultimately, refinement in Phase 3 is executed for
both algorithms.

Delete qold. In Phase 1, the qold slot for each candidate trajectory in set C is
first removed, and then the global heap H is properly updated to reflect this
change. Also, in case of QE, the lower bound LB is decreased as it has one
term fewer.

Regarding candidate generation, GH does not enter Phase 2; the termination
condition on Line 2 of Algorithm 2 is met since candidate set C still contains k
full matches even after removing qold and its slot. On the other hand, QE may
enter Phase 2 despite already having k full matches as its termination condition
on Line 2 of Algorithm 3 additionally requires that these k full matches have a
distance to query set Q above LB. In practice, the subtracted term based on
the qold slot for each of the k full matches could be either greater (i.e., equal
to DIAM if the qold slot was unmatched) or less (if qold was matched) than
the corresponding term for LB. Finally, both algorithms enter Phase 3.

Insert tnew. In Phase 1, the new trajectory tnew is inserted in the candidate set
C as a full match. Hence, neither algorithm enters Phase 2 as their termination
condition for candidate generation still holds. In contrast, both GH/QE enter
Phase 3 to determine whether tnew should evict the previous k-th result.

Delete told. In Phase 1, the deleted trajectory told is removed from candidate
set C. Then, the algorithms enter Phases 2 and 3 only if told was one of the k
full matches (with distance above LB for the QE algorithm).

16 Shuyao Qi, et al.

3.3 Algorithms SRA and SRA+

The state of the continuous SRA/SRA+ algorithms includes the result set R,
the candidate set C, the upper bound dist(ti, Q) of the distance to the set
Q for all ti ∈ C, the common set of R-tree nodes N , the current ri and the
maximum θi radius for all ti ∈ C and last, the upper distance bound UBk.

Increase k. During Phase 1 and the state update of the algorithms, the UBk
bound is re-computed based on the existing candidate trajectories in C; in
practice, UBk is increased (unless there were ties at the k-th place of the pre-
vious result set R) and so are the θj radii of the query points in Q. This change
raises the following critical challenge. Recall from Section 2.4 that SRA/SRA+
have discarded from common set N , R-tree nodes which were outside the max-
imum radii at the time (Lines 8–9 of Algorithm 4); however, after increasing k,
the pruned nodes may contain points from trajectories belonging to the new
result set. To guarantee correctness, we need to consider all such R-tree nodes
and trajectory points.

For this purpose, the continuous version of SRA/SRA+ employs an addi-
tional variable, set Nd which stores the R-tree nodes pruned by the candidate
generation on Line 8. Upon increasing the number of results k, the algorithms
first update the set of nodes N by merging previous N with Nd and then,
update accordingly set S with the trajectories points within distance rj from
each query point qj ∈ Q, and candidate set C. Finally, the algorithms enter
Phase 2 and 3 which correspond to Lines 5–13 and Line 14 of Algorithm 4,
respectively.

Insert qnew. In Phase 1, the current radius rnew only for the new query point
is set to zero while all previous radii rj remain the same. Then, for each
candidate trajectory in C, an additional slot for qnew is created; the slot is
marked as unmatched and populated with the best trajectory point among
those in the other slots. Consequently, the upper distance bound dist(ti, Q)
for each ti ∈ C is re-computed using Equation (7) with Q ∪ {qnew} and as a
result, the UBk bound is also updated (more precisely, increased due to an
additional distance term). Finally, the maximum radius θj for all query points
Q ∪ {qnew} is updated invoking Lines 12–13 in Algorithm 4.

In practice, the maximum radii θj are all increased while the sum over
current radii is unaffected. This change results in the same challenge as the
case of increasing k; hence, to guarantee correctness the set of R-tree nodes N
is accordingly updated using the previously pruned nodes in set Nd. At this
point, there is a second challenge to complete Phase 1 and the state update;
the trajectories points pruned on Line 9 of Algorithm 4 may provide matching
pairs for the new query point qnew. For this purpose, we further extend the
continuous SRA/SRA+ to store these pruned points in a new set Sd, similar to
the case of pruned R-tree nodes. Upon completion of this procedure, the state
of the algorithms is properly updated and the algorithms enter Phase 2 and
3.

Snapshot and Continuous Points-based Trajectory Search 17

Delete qold. During Phase 1, both the current and the maximum radius for the
qold query point are removed while the corresponding slot is eliminated from
all trajectories in C. As a result, their upper distance bound is re-computed; in
practice, dist(·, Q) decreases and so is the UBk upper bound, due to removing
one distance term. Moreover, maximum radii θj are re-calculated. In general,
radii θj may increase which means that SRA/SRA+ need to update the set of
R-tree nodes N using the previously pruned nodes in set Nd (similar to the
case of increasing k or inserting a new query point qnew) and afterwards, also
candidate set C. Subsequently, the algorithms may enter Phase 2 to identify
additional candidate trajectories, while Phase 3 is required nevertheless.

Insert tnew. In Phase 1, trajectory tnew is added to candidate set C and the
upper bound UBk is accordingly updated. In practice, bound UBk may only
reduce and so do the maximum radii. As a result, the termination condition
for candidate generation on Line 5 of Algorithm 4 still holds which means that
neither of the algorithms enters Phase 2. On the other hand, both SRA/SRA+
enter Phase 3 but only to include tnew in result R if dist(tnew, Q) < UBk.

Delete told. In Phase 1, trajectory told is removed from candidate set C. In
addition, if told was part of the previous result set R, the UBk upper bound as
well as maximum radii need to be re-computed. In this case, SRA/SRA+ both
enter Phase 2 and 3.

4 Variants of Points-based Trajectory Search

In this section, we present several extensions to the distance-to-points trajec-
tory search of Sections 2 and 3. Specifically, Sections 4.1 and 4.2 introduce
novel points-based trajectory search problems which additionally take into ac-
count the temporal aspect of the trajectories, besides their spatial proximity
to the query points in Q. Then, Section 4.3 investigates the case of points-
based trajectory search when a visiting order is imposed on the query points.
Finally, Section 4.4 discusses the continuous counterpart of these queries.

4.1 Span-Bounded Distance-to-Points Trajectory Search

Let P ∗i be the set of all matching pairs for a trajectory ti, sorted ascending
on the timestamp of the involved trajectory points. We define the span of
trajectory ti with respect to Q, denoted by span(ti, Q), as the length of the
time interval between the first and the last pair in P ∗i , or equivalently:

span(ti, Q) = max
qx,qy∈Q

(timestamp(p∗ix)− timestamp(p∗iy)) (8)

Intuitively, span(ti, Q) equals the total time needed to reach as close as possible
to all query points in Q, following trajectory ti.

18 Shuyao Qi, et al.

span

d
is

t

⌧

t1

t3

t2

t4

Fig. 3 The span-dist plot of trajectories T = {t1, . . . , t4} from Figure 2.

Problem 2 (Span-Bounded Distance-to-Points Trajectory Search) Given
a collection of trajectories T , a set of query points Q and a span threshold
τ , the k Span-Bounded Distance-to-Points Trajectory Search, denoted by k-
BDTS(T,Q, τ), retrieves the subset of k trajectories R ⊆ T such that:

– for each t ∈ R, span(t, Q) ≤ τ holds, and
– for each t′ ∈ T rR with span(t′, Q) ≤ τ , dist(t, Q) ≤ dist(t′, Q) holds.

Consider again the example of Figure 2; for simplicity the trajectory points
are reported in fixed time intervals. As a result, the span of a trajectory is
proportional to the number of its points from the first to the last matched
point (excluding the first). For example, span(t1, Q) = 4 as there are 4 points
from p∗11 and up to p∗13. Similarly, we obtain the spans of t2, t3, t4 as 2, 1,
2, respectively. Figure 3 plots the trajectories of Figure 2 in the span-dist
plane. DTS ignores the span values and simply returns the trajectories with
the lowest dist coordinate. In contrast, BDTS introduces a threshold, e.g.,
τ = 3, on the span of the trajectories, depicted as the dashed vertical line.
Trajectories to the right of this line, i.e., t1, do not qualify as BDTS results.
Therefore, the result of 2-BDTS is t2, t3, i.e., the trajectories with the 2 lowest
distances among those left of the line. Notice that BDTS may not return the
trajectory with the lowest distance to Q if its span exceeds the threshold; e.g.,
t1 in Figure 3.

We next discuss the evaluation of the span-bounded distance-to-points tra-
jectory search. Intuitively, k-BDTS(T,Q, τ) is equivalent to a k-DTS(T ′, Q)
distance-to-points query over the subset T ′ ⊆ T containing trajectories with
span(·, Q) ≤ τ . However, as span(t, Q) can be computed only after all the
matching pairs of a trajectory t to Q are identified, the major challenge is
to limit the number of invalid partial matches generated, i.e., those with the
span(·, Q) > τ . In the following, we address this issue in two alternative ways.

The idea behind the incremental approach, denoted as INCREMENTAL, is to
progressively construct the result set R by utilizing the generation phase of a
DTS method as a “black” box. Algorithm 5 illustrates INCREMENTAL; note that
any of the algorithms in Section 2 can be used as the underlying DTS method.
At each round, INCREMENTAL asks for the missing k− |R| trajectories to com-
plete the result set R in Lines 3–4. For this purpose, a λ-DTS(T,Q) search is
processed, with the λ value been increased at each round by k − |R|; during

Snapshot and Continuous Points-based Trajectory Search 19

Algorithm 5: INCREMENTAL
Input : collection of trajectories T , set of query points Q, span threshold τ ,

number of results k
Output : result set R
Variables : candidate set C, number of intermediate results λ

1 initialize C ← ∅, R← ∅ and λ← 0;
2 while |R| < k do
3 increase λ by k − |R|;
4 C ← next candidate set of λ-DTS(T,Q);
5 R← R ∪ RefineBDTS(k, T,Q,C, τ);

6 return R;

Procedure 2: RefineBDTS

Input : number of results k, collection of trajectories T , set of query points Q,
candidate set C, span threshold τ

Output : result set R
Variables : k-th distance UBk in R

1 sort C by lower bound dist(·, Q) in ascending order; . Equation (6)

2 for each candidate trajectory ti ∈ C do
3 if |R| = k and dist(ti, Q) ≥ UBk then
4 break; . Result secured

5 compute dist(ti, Q);
6 if span(ti, Q) ≤ τ then
7 if |R| < k or dist(ti, Q) < UBk then
8 update R with ti and UBk;

9 return R;

the first round λ = k. Each time λ is updated in Line 3, the DTS method in
Line 4 does not run from scratch. It continues the candidate generation using
a new termination condition with respect to the updated λ in order to expand
candidate set C. Last, in Line 5, RefineBDTS illustrated in Procedure 2, exam-
ines the new candidates to update result set R by computing their dist(·, Q)
and eliminating trajectories with span(·, Q) > τ ; in practice, the refinement
procedure for BDTS is reminiscent to RefineDTS of Procedure 1, except for
the duration bound check in Line 6.

Intuitively, INCREMENTAL takes a conservative approach to BDTS. As it is
unable to predict which partial matches could provide a valid trajectory (full
match) with span(·, Q) ≤ τ , a refinement phase is needed to “clean” the can-
didate set. Hence, INCREMENTAL may involve several rounds of generation and
refinement phases. To address these issues, we propose the ONE−PASS approach
which involves a single generation and refinement round. The idea is again to
build upon a DTS method but by extending its candidate generation phase
in two ways. First, for each partial match ti in candidate set C, ONE−PASS
computes a lower bound of span(ti, Q) based on the points of ti matching the
current subset of query points Qi ⊂ Q, as follows:

span(ti, Q) =

{
0, if |Qi| = 1

span(ti, Qi), otherwise
(9)

20 Shuyao Qi, et al.

Every partial match with span(·, Q) > τ can be safely pruned. Second, the
original termination is triggered only after candidate set C contains at least
k valid full matches, i.e., with span(·, Q) ≤ τ . This is because the k-th upper
bound UBk of existing candidates can be computed only through full matches.
For example, candidate generation of ONE−PASS based on SRA+ terminates as
soon as at least k valid full matches are identified and rj > θj holds for some
query point qj .

4.2 Span & Distance-to-Points Trajectory Search

Despite taking into account their temporal span, the span-bounded distance-
to-points trajectory search in Section 4.1 still ranks the trajectories solely on
their distance to the query points in Q. Depending on the application, one
may consider alternative definitions for points-based trajectory search that
take into account both the distance and the span metrics. In this spirit, we
consider ranking the results with respect to a linear combination of the span-
dist metrics:

f(t, Q) = α · dist(t, Q) + (1− α) · span(t, Q) (10)

where α weights the importance of each metric. With Equation (10), we in-
troduce the k Span & Distance-to-Points Trajectory Search, denoted by k-
SDTS(T,Q) which returns the subset of k trajectories R ⊆ T with the lowest
f(·, Q) value.

Intuitively, k-SDTS(T,Q) comes as an variation to Problem 1 and the
k-DTS(T,Q) query defined in Section 2 by replacing dist(·, Q) with f(·, Q).
Consequently, all DTS methods discussed in Section 2 can be extended to
evaluate a k-SDTS query. Note that the upper bound f(t, Q) of a partial
match t can be computed by setting span(t, Q) equal to the total duration of
the trajectory t. In contrast, as no matching pairs are identified for the unseen
trajectories, the lower bound LB or the θj values are defined similar to the
DTS methods, i.e., essentially setting the lower bound of span to zero.

4.3 Order-aware Points-based Trajectory Search

Similar to [2], we also consider a variation of the points-based trajectory search
when a visiting order is imposed for the query points. In this search, the
matched trajectory point p∗ij to query point qj , is not necessarily the nearest
to qj point of trajectory ti. Consider for example trajectory t2 in Figure 2. The
depicted p∗22, p∗21, p∗23 for DTS cannot be the matched points in the q1 → q2 →
q3 order-aware DTS, as they violate the visiting order. Instead, the matched
points that preserve the imposed visiting order are p∗22, p∗22, p∗23, where p∗22
is matched with q1 although dist(p∗22, q1) > dist(p∗21, q1). The distance of a

Snapshot and Continuous Points-based Trajectory Search 21

trajectory to sequence Q is recursively defined as follows:

disto(t, Q) =

min

{
disto(t, T (Q)) + dist(H(t), H(Q))−DIAM
disto(T (t), Q)

if t 6= ∅, Q 6= ∅

|Q| ·DIAM if t = ∅
0 if Q = ∅

(11)
where H(S) is the first point (head) in a sequence S, T (S) indicates the
tail of S after removing H(S), ∅ denotes the empty sequence, and DIAM
represents the diameter of the space. The distance can be computed using
dynamic programming [2]. To derive an upper bound on a partial matched
trajectory ti, we consider only the subsequence Qi of Q that contains the
matched query points, i.e., disto(ti, Q) = disto(ti, Qi). For order-aware BDTS,
distance and its upper bound are the same as in order-aware DTS. Note,
however that the lower bound on span (Equation (9)) does not apply as the
matching is not yet finalized. For order-aware SDTS evaluation, fo(t, Q) and
its upper bound are defined in a similar manner to order-aware DTS.

4.4 Continuous Points-based Trajectory Search Variants

Similar to the distance-to-points trajectory search in Section 2, we finally dis-
cuss how BDTS, SDTS and ordered-aware trajectory search can be approached
as continuous queries. To this end, we consider the same types of updates as in
Section 3, i.e., increase/decrease k, insert/delete a trajectory and insert/delete
a query point. Note also that the methods for the continuous BDTS, SDTS
and ordered-aware trajectory search follow the same three-phase evaluation
paradigm of state update in Phase 1, candidate generation in Phase 2, and
refinement in Phase 3.

Continuous BDTS. Similar to its snapshot counterpart, a continuous BDTS
is evaluated by building on top of a continuous DTS algorithm; in practice, the
key for this purpose is to additionally consider span(·, Q) and its lower bound
span(·, Q) in each of the three phases. In particular, both inserting/deleting
a trajectory and increasing/decreasing number of results k updates are han-
dled almost identical to continuous DTS as span(·, Q) and span(·, Q) for each
candidate trajectory in set C are unaffected. A small special case arises when
inserting a new trajectory; during Phase 1, the continuous algorithm still treats
tnew as a full match computing its dist(tnew, Q) but adds tnew to candidate
set C only if span(tnew, Q) does not exceed threshold τ .

On the other hand, updating the set of query points Q may affect the span
of the candidate trajectories. When a new query point is added toQ, span(t, Q)
for each candidate t ∈ C (which equals span(t, Q) for full matches based on
Equation (9)) may increase due to considering an additional term. Under this,
during Phase 1, the continuous algorithm needs to examine the contents of set
C and potentially eliminate trajectories with span(·, Q) > τ . Such an update
may force the algorithm to enter Phase 2 as the termination condition of
candidate generation may no longer hold. Finally, removing a query point from

22 Shuyao Qi, et al.

Table 1 Experimental parameters

description parameter value range default value

Number of results k 1, 5, 10, 50, 100 10
Number of query points |Q| 2, 4, 6, 8, 10 6
Span threshold ratio τ/τmin 1, 1.5, 2, 2.5, 3 3
Linear combination factor α 0, 0.25,0.5, 0.75, 1 0.5

Q could result in decreasing span(·, Q) which means that previously pruned
trajectories would now qualify as valid candidates. To guarantee correctness,
the continuous algorithms maintain and employ during Phase 1, an additional
set Cd with these pruned trajectories, similar to structures Nd and Sd for
SRA/SRA+.

Continuous SDTS. Similar to its snapshot counterpart, a continuous SDTS
query intuitively comes as a continuous DTS query where f(·, Q) is consid-
ered in place of dist(·, Q). In this spirit, first, the ranking criteria and the
lower/upper bounds of f(·, Q) are computed according to Equation (10), and
second, similar to BDTS, the span(·, Q) lower bound for the candidate trajec-
tories in set C is updated in case of insert/delete query point updates.

Continuous order-aware points-based trajectory search. The continu-
ous DTS, BDTS and SDTS queries can be extended to the case when a visiting
order is imposed on the query points, similar to their snapshot counterparts.
The ideas discussed in Section 4.3 are directly applicable to address these
order-aware variants. For instance, in case of ordered-aware continuous DTS,
distance bounds of the candidate trajectories are re-computed according to
Equation (11).

5 Experimental Analysis

We evaluate the efficiency of our methods for both snapshot and continuous
points-based trajectory search. Section 5.1 details the setup of our analysis.
Sections 5.2 and 5.3 demonstrate the efficiency of our methods for snapshot and
continuous points-based trajectory search, respectively. All algorithms were
implemented in C++ and the tests run on a machine with Intel Core i7-3770
3.40GHz and 16GB main memory running Ubuntu Linux.

5.1 Setup

We conducted our analysis using real-world trajectories from the GeoLife
Project [24–26].3 The collection contains 17,166 trajectories with approxi-
mately 19m points in the city of Beijing, recording a broad range of outdoor
movement, from everyday routine to entertainment and sport activities, such

3 http://research.microsoft.com/en-us/projects/geolife/

Snapshot and Continuous Points-based Trajectory Search 23

(a) GeoLife trajectories

category cardinality

Restaurants 51,971
Hotels 10,620

Pharmacies 6,963
Schools 6,618
Banks 6,057

Police stations 2,509
Supermarkets 2,356
Gas stations 1,916
Post offices 1,125
Museums 905

(b) Types of POIs

Fig. 4 Experimental dataset in the city of Beijing

as shopping, sightseeing, dining, and cycling; Figure 4(a) illustrates the dis-
tribution of the GeoLife trajectories. To generate our query sets, we collected
around 90k points of interest (POIs) of various types (see Figure 4(b)), located
inside the same area covered by the trajectories. A query set Q is formed by
randomly selecting a combination of |Q| types and a particular POI from each
type.

We assess the performance of all involved methods measuring their CPU
and I/O cost, and the number of candidates they generate over 1,000 distinct
query sets Q, while varying (i) the number of returned trajectories k and (ii)
the number of query points |Q|. In case of BDTS queries, we additionally vary
the span threshold via the τ/τmin ratio, where τmin is the minimum possible
time required to travel among the query points in Q at a constant velocity
of 50km/h. Finally, for SDTS queries, we also vary the weight factor α of
Equation (10). Table 1 summarizes all parameters involved in our study

5.2 Snapshot Queries

We report the results of our tests on distance-to-points, span-bounded distance-
to-points and span & distance-to-points trajectory snapshot search.

5.2.1 Distance-to-Points Trajectory Search

Figure 5 reports the CPU cost, the I/O cost and the number of generated can-
didates for the DTS methods. As expected the processing cost of all methods
goes up as the values of k and |Q| increase. The tests clearly show that SRA+
is overall the most efficient evaluation method. We also make the following
observations.

First, we observe that IKNN always outperforms GH/QE; note that this is the
first time the methods from [2,18] are compared. Naturally, GH comes as the
least efficient method; due to the examination order imposed by global heap

24 Shuyao Qi, et al.

 0.1

 1

 10

 100

1 5 10 50 100

C
P

U
 c

o
st

 (
se

c)

GH QE IKNN NNA SRA SRA+

 0.1

 1

 10

 100

1 5 10 50 100

C
P

U
 c

o
st

 (
se

c
)

(a) varying k (log)

 1

 10

 100

1 5 10 50 100

N
u
m

b
e
r

o
f

I/
O

s
(x

1
0
0
0
)

(b) varying k (log)

 1

 10

 100

1 5 10 50 100

N
u
m

b
e
r

o
f

c
a
n
d
id

a
te

s
(x

1
0
0
0
)

(c) varying k (log)

 0.01

 0.1

 1

 10

 100

2 4 6 8 10

C
P

U
 c

o
st

 (
se

c
)

(d) varying |Q|

 0.1

 1

 10

 100

2 4 6 8 10

N
u
m

b
e
r

o
f

I/
O

s
(x

1
0
0
0
)

(e) varying |Q|

 0.1

 1

 10

 100

2 4 6 8 10

N
u
m

b
e
r

o
f

c
a
n
d
id

a
te

s
(x

1
0
0
0
)

(f) varying |Q|

Fig. 5 Performance comparison for Distance-to-Points Trajectory Search

 0.1

 1

 10

 100

1 5 10 50 100

C
P

U
 c

o
st

 (
se

c)

GH QE IKNN NNA SRA SRA+

 0

 2

 4

 6

 8

 10

 12

 14

1 5 10 50 100

C
P

U
 c

o
st

 (
se

c
)

(a) varying k (log)

 0

 20

 40

 60

 80

 100

 120

 140

 160

1 5 10 50 100

N
u
m

b
e
r

o
f

I/
O

s
(x

1
0
0
0
)

(b) varying k (log)

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 5 10 50 100

N
u
m

b
e
r

o
f

c
a
n
d
id

a
te

s
(x

1
0
0
0
)

(c) varying k (log)

 0

 5

 10

 15

 20

 25

 30

2 4 6 8 10

C
P

U
 c

o
st

 (
se

c
)

(d) varying |Q|

 0

 50

 100

 150

 200

 250

 300

2 4 6 8 10

N
u
m

b
e
r

o
f

I/
O

s
(x

1
0
0
0
)

(e) varying |Q|

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

2 4 6 8 10

N
u
m

b
e
r

o
f

c
a
n
d
id

a
te

s
(x

1
0
0
0
)

(f) varying |Q|

Fig. 6 Performance comparison for Distance-to-Points Trajectory Search (order-aware)

H, the algorithm is unable to cope with the skewed distribution of the real-
world data. QE manages to overcome the shortcomings of GH by completing
the empty slots of the most promising candidates. Yet, compared to IKNN, QE
is less efficient due to its weak termination condition for the generation phase;
recall that at least k full matches are needed for this purpose which also results
in generating a larger number of candidates, as shown in Figures 5(c) and (f).
The advantage of IKNN over GH/QE justifies our decision to build the hybrid

Snapshot and Continuous Points-based Trajectory Search 25

NNA method upon the round robin-based candidate generation of IKNN which
retrieves nearest neighbor points in batches, and its powerful threshold-based
termination condition. NNA is indeed the most efficient NN-based method, in
fact with an order of magnitude improvement over IKNN and GH/QE on both
CPU and I/O cost. Finally, Figure 5 clearly shows the advantage of the spatial
range-based evaluation approach over the NN-based one. SRA is always faster
while incurring fewer disk page accesses than IKNN, and in a similar manner,
SRA+ outperforms NNA.

We also experimented with the order-aware variant of DTS. Figure 6 de-
picts similar results to Figure 5; the spatial range-based evaluation approach
is again superior to the NN-based and overall, SRA+ is the most efficient
method. Nevertheless, it is important to notice that the advantage of com-
pleting the most proposing candidates is smaller compared to Figure 5, in
terms of the CPU cost. Specifically, observe how close is the running time of
GH to QE, of IKNN to NNA and of SRA to SRA+, in Figures 6(a) and (d). This
is expected as completing partial matches employs dynamic programming to
compute disto(·, Q).

5.2.2 Span-Bounded Distance-to-Points Trajectory Search

Next, we investigate the evaluation of BDTS queries while varying k, |Q|
and τ/τmin. Based on the findings of the previous section, we use SRA+ as
the underlying DTS method. Figure 7 and 8 for the order-aware variant of
BDTS, clearly show that ONE−PASS outperforms INCREMENTAL in all cases. As
expected, the conservative approach of INCREMENTAL generates a larger number
of candidates by performing multiple rounds of generation and refinement
which results in both higher running time and more disk page accesses. Last,
notice that the evaluation of BDTS becomes less expensive for both methods
while increasing τ/τmin, as the number of invalid candidates progressively
drops.

5.2.3 Span & Distance-to-Points Trajectory Search

Last, we study the evaluation of SDTS queries. For this experiment, we ex-
tended the most dominant method from [2,18], i.e., IKNN, and our methods
NNA, SRA and SRA+ following the discussion in Section 4.2. The results in Fig-
ure 9 demonstrate, similar to the DTS case in Section 5.2.1, the advantage
of both the spatial range-based approach and the SRA+ algorithm which is
overall the most efficient evaluation method. Figure 10 show the results for
the order-aware variant of SDTS, where the relative performance is identical
to Figure 9.

5.3 Continuous Queries

We next switch our focus to continuous points-based trajectory search; in par-
ticular, we study the case of continuous DTS queries as detailed in Section 3.

26 Shuyao Qi, et al.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1 5 10 50 100

CP
U

 c
os

t (
se

c)

INCREMENTAL ONE-PASS

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1 5 10 50 100

C
P

U
 c

o
st

 (
se

c
)

(a) varying k (log)

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

1 5 10 50 100

N
u
m

b
e
r

o
f

I/
O

s
(x

1
0
0
0
)

(b) varying k (log)

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 5 10 50 100

N
u
m

b
e
r

o
f

c
a
n
d
id

a
te

s
(x

1
0
0
0
)

(c) varying k (log)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

2 4 6 8 10

C
P

U
 c

o
st

 (
se

c
)

(d) varying |Q|

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

2 4 6 8 10

N
u
m

b
e
r

o
f

I/
O

s
(x

1
0
0
0
)

(e) varying |Q|

 1

 2

 3

 4

 5

 6

 7

 8

2 4 6 8 10

N
u
m

b
e
r

o
f

c
a
n
d
id

a
te

s
(x

1
0
0
0
)

(f) varying |Q|

 0

 0.5

 1

 1.5

 2

 2.5

1 1.5 2 2.5 3

C
P

U
 c

o
st

 (
se

c
)

(g) varying τ/τmin

 0

 5

 10

 15

 20

 25

 30

 35

1 1.5 2 2.5 3

N
u
m

b
e
r

o
f

I/
O

s
(x

1
0
0
0
)

(h) varying τ/τmin

 0

 1

 2

 3

 4

 5

 6

1 1.5 2 2.5 3

N
u
m

b
e
r

o
f

c
a
n
d
id

a
te

s
(x

1
0
0
0
)

(i) varying τ/τmin

Fig. 7 Performance comparison for Span-Bounded Distance-to-Points Trajectory Search

To this end, the following experimental scenario is considered for each type of
updates. An initial DTS query is first issued; a DTS algorithm computes and
stores the result and the other entries of its state. Then, four updates occur
one after the other; the algorithm handles each update event, i.e., it outputs
the new result sets. Our previous tests on snapshot DTS queries demonstrated
the advantage of our spatial range-based evaluation approach. However, to de-
liver a complete analysis, we experiment with the continuous counterpart of
all GH, QE,IKNN, NNA, SRA and SRA+ methods. For every algorithm, we measure
and plot its CPU and I/O cost, and the number of candidate trajectories,
regarding both the initial DTS query and each of the updates. Note that we
initially set parameters k and |Q| to their default values according to Table 1.
Figures 11–13 report the results of our tests using stacked histograms. We
make the following observations.

First as expected, the tests back up our original argument about the effi-
cient evaluation of continuous points-based trajectory search. Employing the
continuous counterpart of a DTS algorithm which resumes from its previous
state is in all cases (algorithms and update types) faster than running the
snapshot DTS algorithm from scratch. In the latter case, the cost of handling

Snapshot and Continuous Points-based Trajectory Search 27

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1 5 10 50 100

CP
U

 c
os

t (
se

c)

INCREMENTAL ONE-PASS

 1

 10

1 5 10 50 100

C
P

U
 c

o
st

 (
se

c
)

(a) varying k (log)

 10

 100

1 5 10 50 100

N
u
m

b
e
r

o
f

I/
O

s
(x

1
0
0
0
)

(b) varying k (log)

 0

 2

 4

 6

 8

 10

 12

1 5 10 50 100

N
u
m

b
e
r

o
f

c
a
n
d
id

a
te

s
(x

1
0
0
0
)

(c) varying k (log)

 0.1

 1

 10

2 4 6 8 10

C
P

U
 c

o
st

 (
se

c
)

(d) varying |Q|

 1

 10

 100

 1000

2 4 6 8 10

N
u
m

b
e
r

o
f

I/
O

s
(x

1
0
0
0
)

(e) varying |Q|

 0

 2

 4

 6

 8

 10

 12

2 4 6 8 10

N
u
m

b
e
r

o
f

c
a
n
d
id

a
te

s
(x

1
0
0
0
)

(f) varying |Q|

 0

 1

 2

 3

 4

 5

 6

1 1.5 2 2.5 3

C
P

U
 c

o
st

 (
se

c
)

(g) varying τ/τmin

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 1.5 2 2.5 3

N
u
m

b
e
r

o
f

I/
O

s
(x

1
0
0
0
)

(h) varying τ/τmin

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

1 1.5 2 2.5 3

N
u
m

b
e
r

o
f

c
a
n
d
id

a
te

s
(x

1
0
0
0
)

(i) varying τ/τmin

Fig. 8 Performance comparison for Span-Bounded Distance-to-Points Trajectory Search
(order-aware)

each update event practically equals the cost of the initial query. We notice
that this benefit is larger in case of the GH, IKNN and SRA algorithms com-
pared to QE, NNA and SRA+, which is expected. Recall that all QE, NNA and
SRA+ periodically fill the empty slots of the most promising partial matches
which allows the methods to terminate earlier and drastically reduce the num-
ber of candidates. This aggressive approach pays off in case of one-time DTS
queries but not under a continuous querying scenario. In fact, the method
that benefits the most is GH, which in practice, computes such a large number
of candidates during the evaluation of the kick-off DTS query that very few
additional candidate trajectories need to be identified later while handling the
updates.

Second, we observe that the spatial range-based approach outperforms all
NN-based approaches, similar to the case of snapshot DTS queries. Notice also
that the impact of filling the empty slots of partial matches is less significant
for spatial range-based evaluation. In practice, this observation is of great
value as it allows us to use a spatial range-based method for both snapshot
and continuous DTS queries.

28 Shuyao Qi, et al.

 0.1

 1

 10

1 5 10 50 100

C
P

U
 c

o
st

 (
se

c)

IKNN NNA SRA SRA+

 0.1

 1

 10

1 5 10 50 100

C
P

U
 c

o
st

 (
se

c
)

(a) varying k (log)

 1

 10

 100

 1000

1 5 10 50 100

N
u
m

b
e
r

o
f

I/
O

s
(x

1
0
0
0
)

(b) varying k (log)

 1

 10

 100

1 5 10 50 100

N
u
m

b
e
r

o
f

c
a
n
d
id

a
te

s
(x

1
0
0
0
)

(c) varying k (log)

 0.01

 0.1

 1

 10

2 4 6 8 10

C
P

U
 c

o
st

 (
se

c
)

(d) varying |Q|

 1

 10

 100

 1000

2 4 6 8 10

N
u
m

b
e
r

o
f

I/
O

s
(x

1
0
0
0
)

(e) varying |Q|

 1

 10

 100

2 4 6 8 10

N
u
m

b
e
r

o
f

c
a
n
d
id

a
te

s
(x

1
0
0
0
)

(f) varying |Q|

 0.1

 1

 10

 100

0 0.25 0.5 0.75 1

C
P

U
 c

o
st

 (
se

c
)

(g) varying α

 1

 10

 100

 1000

0 0.25 0.5 0.75 1

N
u
m

b
e
r

o
f

I/
O

s
(x

1
0
0
0
)

(h) varying α

 1

 10

 100

0 0.25 0.5 0.75 1

N
u
m

b
e
r

o
f

c
a
n
d
id

a
te

s
(x

1
0
0
0
)

(i) varying α

Fig. 9 Performance comparison for Span & Distance-to-Points Trajectory Search

Finally, we also experiment with the order-aware variant of continuous
DTS; Figures 14–16 report the results of our tests. As expected, the cost of
the order-aware continuous search is (for all algorithms and query types) higher
compared to the case when no order is imposed among the query points in set
Q. This is because of employing dynamic programming to compute disto(·, Q).
Nevertheless, our tests still demonstrate the advantage of the continuous coun-
terparts of the DTS algorithms, and most importantly the superiority of the
spatial range-based evaluation.

6 Related Work

Apart from the studies [2,18] for distance-to-points search on trajectories de-
tailed in Section 2.2, our work is also related to top-k and nearest neighbor
queries.

Trajectory Search. Previous work in querying trajectories can be classified
in three query types [27]. The P-Query asks for trajectories satisfying some
spatio-temporal relationship to an input point/points. The basic scenario [4]

Snapshot and Continuous Points-based Trajectory Search 29

 0.1

 1

 10

1 5 10 50 100

C
P

U
 c

o
st

 (
se

c)

IKNN NNA SRA SRA+

 1

 10

1 5 10 50 100

C
P

U
 c

o
st

 (
se

c
)

(a) varying k (log)

 10

 100

1 5 10 50 100

N
u
m

b
e
r

o
f

I/
O

s
(x

1
0
0
0
)

(b) varying k (log)

 0

 2

 4

 6

 8

 10

 12

 14

1 5 10 50 100

N
u
m

b
e
r

o
f

c
a
n
d
id

a
te

s
(x

1
0
0
0
)

(c) varying k (log)

 0.01

 0.1

 1

 10

 100

2 4 6 8 10

C
P

U
 c

o
st

 (
se

c
)

(d) varying |Q|

 1

 10

 100

 1000

2 4 6 8 10

N
u
m

b
e
r

o
f

I/
O

s
(x

1
0
0
0
)

(e) varying |Q|

 0

 2

 4

 6

 8

 10

 12

 14

2 4 6 8 10

N
u
m

b
e
r

o
f

c
a
n
d
id

a
te

s
(x

1
0
0
0
)

(f) varying |Q|

 0.1

 1

 10

 100

0 0.25 0.5 0.75 1

C
P

U
 c

o
st

 (
se

c
)

(g) varying α

 1

 10

 100

 1000

0 0.25 0.5 0.75 1

N
u
m

b
e
r

o
f

I/
O

s
(x

1
0
0
0
)

(h) varying α

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

0 0.25 0.5 0.75 1

N
u
m

b
e
r

o
f

c
a
n
d
id

a
te

s
(x

1
0
0
0
)

(i) varying α

Fig. 10 Performance comparison for Span & Distance-to-Points Trajectory Search (order-
aware)

is to find trajectories based on one point ranked by the distance or filtered
by a spatio-temporal threshold. The multiple-points trajectory query [2,18]
studies a more generic case where the trajectories are retrieved based on their
distances to multiple input locations. The DTS problem we study is this paper
is an multiple-points P-Query. The R-Query searches for trajectory segments
belonging to a specified spatio-temporal region. Pfoser et al. [14] study several
variants under this category and propose the TB-tree index, which is a hybrid
R-tree structure preserving trajectories as well as typical R-tree range searches.
Lastly, the T-Query asks for trajectories that are similar or close to given
trajectories, where a typical application is trajectory clustering [10,11].

Top-k Queries. Consider a collection of objects, each having a number of
scoring attributes, e.g., rankings. Given an aggregate function γ (e.g., SUM)
on these scoring attributes, a top-k query returns the k objects with the high-
est aggregated score. To evaluate such a query, a sorted list for each attribute
ai organizes the objects in decreasing order of their value to ai; requests for
random accesses of an attribute value based on object identifiers may be also
possible. Ilyas et al. overviews top-k queries in [8] providing a categorization of

30 Shuyao Qi, et al.

 0

 10

 20

 30

 40

 50

 60

 70

SRA+ SRA NNA IKNN QE GH

C
PU

 c
os

t (
se

c)

initial
initial
initial
initial

1st insertion
1st deletion
1st increase
1st decrease

2nd insertion
2nd deletion
2nd increase
2nd decrease

3rd insertion
3rd deletion
3rd increase
3rd decrease

4th insertion
4th deletion
4th increase
4th decrease

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

SRA+ SRA NNA IKNN QE GH

C
P

U
 c

o
st

 (
se

c
)

(a) |Q| = 6, k = 10

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

SRA+ SRA NNA IKNN QE GH

N
u
m

b
e
r

o
f

I/
O

s
(x

1
0
0
0
)

(b) |Q| = 6, k = 10

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

SRA+ SRA NNAIKNN QE GH

N
u
m

b
e
r

o
f

C
a
n
d
id

a
te

s

(c) |Q| = 6, k = 10

 0

 10

 20

 30

 40

 50

 60

 70

SRA+ SRA NNA IKNN QE GH

C
PU

 c
os

t (
se

c)

initial
initial
initial
initial

1st insertion
1st deletion
1st increase
1st decrease

2nd insertion
2nd deletion
2nd increase
2nd decrease

3rd insertion
3rd deletion
3rd increase
3rd decrease

4th insertion
4th deletion
4th increase
4th decrease

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

SRA+ SRA NNA IKNN QE GH

C
P

U
 c

o
st

 (
se

c
)

(d) |Q| = 6, k = 10

 0

 20

 40

 60

 80

 100

 120

SRA+ SRA NNA IKNN QE GH

N
u
m

b
e
r

o
f

I/
O

s
(x

1
0
0
0
)

(e) |Q| = 6, k = 10

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

SRA+ SRA NNAIKNN QE GH

N
u
m

b
e
r

o
f

C
a
n
d
id

a
te

s

(f) |Q| = 6, k = 10

Fig. 11 Continuous DTS: inserting/deleting four query points.

 0

 10

 20

 30

 40

 50

 60

 70

SRA+ SRA NNA IKNN QE GH

C
PU

 c
os

t (
se

c)

initial
initial
initial
initial

1st insertion
1st deletion
1st increase
1st decrease

2nd insertion
2nd deletion
2nd increase
2nd decrease

3rd insertion
3rd deletion
3rd increase
3rd decrease

4th insertion
4th deletion
4th increase
4th decrease

 0

 2

 4

 6

 8

 10

 12

SRA+ SRA NNA IKNN QE GH

C
P

U
 c

o
st

 (
se

c
)

(a) |Q| = 6, k = 10

 0

 20

 40

 60

 80

 100

 120

SRA+ SRA NNA IKNN QE GH

N
u
m

b
e
r

o
f

I/
O

s
(x

1
0
0
0
)

(b) |Q| = 6, k = 10

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

SRA+ SRA NNAIKNN QE GH

N
u
m

b
e
r

o
f

C
a
n
d
id

a
te

s

(c) |Q| = 6, k = 10

 0

 10

 20

 30

 40

 50

 60

 70

SRA+ SRA NNA IKNN QE GH

C
PU

 c
os

t (
se

c)

initial
initial
initial
initial

1st insertion
1st deletion
1st increase
1st decrease

2nd insertion
2nd deletion
2nd increase
2nd decrease

3rd insertion
3rd deletion
3rd increase
3rd decrease

4th insertion
4th deletion
4th increase
4th decrease

 0

 2

 4

 6

 8

 10

 12

SRA+ SRA NNA IKNN QE GH

C
P

U
 c

o
st

 (
se

c
)

(d) |Q| = 6, k = 10

 0

 20

 40

 60

 80

 100

 120

SRA+ SRA NNA IKNN QE GH

N
u
m

b
e
r

o
f

I/
O

s
(x

1
0
0
0
)

(e) |Q| = 6, k = 10

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

SRA+ SRA NNAIKNN QE GH

N
u
m

b
e
r

o
f

C
a
n
d
id

a
te

s

(f) |Q| = 6, k = 10

Fig. 12 Continuous DTS: increasing/decreasing k by 2.

the proposed methods. Specifically, when both sorted and random accesses are
possible, the TA/CA [3] and Quick−Combine [6] algorithms can be applied. TA
retrieves objects from the sorted lists in a round-robin fashion while a priority
queue to organizes the best k objects so far. Based on the last seen attribute
values, the algorithm defines an upper score bound for the unseen objects, and

Snapshot and Continuous Points-based Trajectory Search 31

 0

 10

 20

 30

 40

 50

 60

 70

SRA+ SRA NNA IKNN QE GH

C
PU

 c
os

t (
se

c)

initial
initial
initial
initial

1st insertion
1st deletion
1st increase
1st decrease

2nd insertion
2nd deletion
2nd increase
2nd decrease

3rd insertion
3rd deletion
3rd increase
3rd decrease

4th insertion
4th deletion
4th increase
4th decrease

 0

 2

 4

 6

 8

 10

 12

SRA+ SRA NNA IKNN QE GH

C
P

U
 c

o
st

 (
se

c
)

(a) |Q| = 6, k = 10

 0

 20

 40

 60

 80

 100

 120

SRA+ SRA NNA IKNN QE GH

N
u
m

b
e
r

o
f

I/
O

s
(x

1
0
0
0
)

(b) |Q| = 6, k = 10

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

SRA+ SRA NNAIKNN QE GH

N
u
m

b
e
r

o
f

C
a
n
d
id

a
te

s

(c) |Q| = 6, k = 10

 0

 10

 20

 30

 40

 50

 60

 70

SRA+ SRA NNA IKNN QE GH

C
PU

 c
os

t (
se

c)

initial
initial
initial
initial

1st insertion
1st deletion
1st increase
1st decrease

2nd insertion
2nd deletion
2nd increase
2nd decrease

3rd insertion
3rd deletion
3rd increase
3rd decrease

4th insertion
4th deletion
4th increase
4th decrease

 0

 2

 4

 6

 8

 10

 12

SRA+ SRA NNA IKNN QE GH

C
P

U
 c

o
st

 (
se

c
)

(d) |Q| = 6, k = 10

 0

 20

 40

 60

 80

 100

 120

SRA+ SRA NNA IKNN QE GH

N
u
m

b
e
r

o
f

I/
O

s
(x

1
0
0
0
)

(e) |Q| = 6, k = 10

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

SRA+ SRA NNAIKNN QE GH

N
u
m

b
e
r

o
f

C
a
n
d
id

a
te

s

(f) |Q| = 6, k = 10

Fig. 13 Continuous DTS: inserting/deleting four trajectories.

 0

 10

 20

 30

 40

 50

 60

 70

SRA+ SRA NNA IKNN QE GH

C
PU

 c
os

t (
se

c)

initial
initial
initial
initial

1st insertion
1st deletion
1st increase
1st decrease

2nd insertion
2nd deletion
2nd increase
2nd decrease

3rd insertion
3rd deletion
3rd increase
3rd decrease

4th insertion
4th deletion
4th increase
4th decrease

 0

 5

 10

 15

 20

 25

 30

 35

SRA+ SRA NNA IKNN QE GH

C
P

U
 c

o
st

 (
se

c
)

(a) |Q| = 6, k = 10

 0

 50

 100

 150

 200

 250

SRA+ SRA NNA IKNN QE GH

N
u
m

b
e
r

o
f

I/
O

s
(x

1
0
0
0
)

(b) |Q| = 6, k = 10

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

SRA+ SRA NNAIKNN QE GH

N
u
m

b
e
r

o
f

C
a
n
d
id

a
te

s

(c) |Q| = 6, k = 10

 0

 10

 20

 30

 40

 50

 60

 70

SRA+ SRA NNA IKNN QE GH

C
PU

 c
os

t (
se

c)

initial
initial
initial
initial

1st insertion
1st deletion
1st increase
1st decrease

2nd insertion
2nd deletion
2nd increase
2nd decrease

3rd insertion
3rd deletion
3rd increase
3rd decrease

4th insertion
4th deletion
4th increase
4th decrease

 0

 20000

 40000

 60000

 80000

 100000

 120000

SRA+ SRA NNAIKNN QE GH

C
P

U
 c

o
st

 (
se

c
)

(d) |Q| = 6, k = 10

 0

 20

 40

 60

 80

 100

 120

SRA+ SRA NNA IKNN QE GH

N
u
m

b
e
r

o
f

I/
O

s
(x

1
0
0
0
)

(e) |Q| = 6, k = 10

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

SRA+ SRA NNAIKNN QE GH

N
u
m

b
e
r

o
f

C
a
n
d
id

a
te

s

(f) |Q| = 6, k = 10

Fig. 14 Continuous DTS: inserting/deleting four query points (order-aware).

terminates if current k-th highest aggregate score is higher than this threshold.
TA assumes that the costs of the two different access methods are the same.
As an alternative, CA defines a ratio between these costs to control the number
of random accesses, which in practice are usually more expensive than sorted
accesses. Hence, the algorithm periodically performs random accesses to col-

32 Shuyao Qi, et al.

 0

 10

 20

 30

 40

 50

 60

 70

SRA+ SRA NNA IKNN QE GH

C
PU

 c
os

t (
se

c)

initial
initial
initial
initial

1st insertion
1st deletion
1st increase
1st decrease

2nd insertion
2nd deletion
2nd increase
2nd decrease

3rd insertion
3rd deletion
3rd increase
3rd decrease

4th insertion
4th deletion
4th increase
4th decrease

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

SRA+ SRA NNA IKNN QE GH

C
P

U
 c

o
st

 (
se

c
)

(a) |Q| = 6, k = 10

 0

 20

 40

 60

 80

 100

 120

SRA+ SRA NNA IKNN QE GH

N
u
m

b
e
r

o
f

I/
O

s
(x

1
0
0
0
)

(b) |Q| = 6, k = 10

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

SRA+ SRA NNAIKNN QE GH

N
u
m

b
e
r

o
f

C
a
n
d
id

a
te

s

(c) |Q| = 6, k = 10

 0

 10

 20

 30

 40

 50

 60

 70

SRA+ SRA NNA IKNN QE GH

C
PU

 c
os

t (
se

c)

initial
initial
initial
initial

1st insertion
1st deletion
1st increase
1st decrease

2nd insertion
2nd deletion
2nd increase
2nd decrease

3rd insertion
3rd deletion
3rd increase
3rd decrease

4th insertion
4th deletion
4th increase
4th decrease

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

SRA+ SRA NNA IKNN QE GH

C
P

U
 c

o
st

 (
se

c
)

(d) |Q| = 6, k = 10

 0

 20

 40

 60

 80

 100

 120

SRA+ SRA NNA IKNN QE GH

N
u
m

b
e
r

o
f

I/
O

s
(x

1
0
0
0
)

(e) |Q| = 6, k = 10

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

SRA+ SRA NNAIKNN QE GH

N
u
m

b
e
r

o
f

C
a
n
d
id

a
te

s

(f) |Q| = 6, k = 10

Fig. 15 Continuous DTS: increasing/decreasing k by 2 (order-aware).

 0

 10

 20

 30

 40

 50

 60

 70

SRA+ SRA NNA IKNN QE GH

C
PU

 c
os

t (
se

c)

initial
initial
initial
initial

1st insertion
1st deletion
1st increase
1st decrease

2nd insertion
2nd deletion
2nd increase
2nd decrease

3rd insertion
3rd deletion
3rd increase
3rd decrease

4th insertion
4th deletion
4th increase
4th decrease

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

SRA+ SRA NNA IKNN QE GH

C
P

U
 c

o
st

 (
se

c
)

(a) |Q| = 6, k = 10

 0

 20

 40

 60

 80

 100

 120

SRA+ SRA NNA IKNN QE GH

N
u
m

b
e
r

o
f

I/
O

s
(x

1
0
0
0
)

(b) |Q| = 6, k = 10

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

SRA+ SRA NNAIKNN QE GH

N
u
m

b
e
r

o
f

C
a
n
d
id

a
te

s

(c) |Q| = 6, k = 10

 0

 10

 20

 30

 40

 50

 60

 70

SRA+ SRA NNA IKNN QE GH

C
PU

 c
os

t (
se

c)

initial
initial
initial
initial

1st insertion
1st deletion
1st increase
1st decrease

2nd insertion
2nd deletion
2nd increase
2nd decrease

3rd insertion
3rd deletion
3rd increase
3rd decrease

4th insertion
4th deletion
4th increase
4th decrease

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

SRA+ SRA NNA IKNN QE GH

C
P

U
 c

o
st

 (
se

c
)

(d) |Q| = 6, k = 10

 0

 20

 40

 60

 80

 100

 120

SRA+ SRA NNA IKNN QE GH

N
u
m

b
e
r

o
f

I/
O

s
(x

1
0
0
0
)

(e) |Q| = 6, k = 10

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

SRA+ SRA NNAIKNN QE GH

N
u
m

b
e
r

o
f

C
a
n
d
id

a
te

s

(f) |Q| = 6, k = 10

Fig. 16 Continuous DTS: inserting/deleting four trajectories (order-aware).

lect unknown values for the most “promising” objects. Last, the idea behind
Quick−Combine is to favor accesses from the sorted lists of attributes which
significantly influence the overall scores and the termination threshold. In con-
trast, when only sorted accesses are possible, the NRA [3] and Stream−Combine
[5] algorithms can be applied. Intuitively, Stream−Combine operates similar to

Snapshot and Continuous Points-based Trajectory Search 33

Quick−Combine without performing any random accesses. In Section 2.2, we
discuss how the methods in [2,18] build upon previous work on top-k queries
to address distance-to-points search on trajectories.

Nearest Neighbor Queries. There is an enormous amount of work on the
nearest neighbor (NN) query (also known as similarity search), which returns
the object that has the smallest distance to a given query point; k-NN queries
output the k nearest objects in ascending distance. Roussopoulos et al. pro-
posed a depth-first approach to k-NN query in [16] while Hjaltason et al. en-
hanced the evaluation with a best-first search strategy in [7]. An overview of
index-based approaches can be found in [1]; efficient methods for metric spaces,
e.g., [9], and high-dimensional data, e.g., [19], have also been proposed.

For a set of query points, the aggregate nearest neighbor (ANN) query [13]
retrieves the object that minimizes an aggregate distance to the query points.
As an example, for the MAX aggregate function and assuming that the set of
query points are users, and distances represent travel times, ANN outputs the
location that minimizes the time necessary for all users to meet. In case of the
SUM function and Euclidean distances, the optimal location is also known as
the Fermat-Weber point, for which no closed-form formula exists.

In continuous, or long-standing, NN queries, the result of a standard NN
query must be continuously maintained as updates to the query location
and/or the data objects appear. The methods in [17] and [22] handle the
case when only the query location is moving. The former retrieves m > k
nearest neighbors hoping that the result at a future time is among these m
objects, provided that the query does not move much. The latter returns a
Voronoi-based validity region such that the result does not change as long as
the query remains within the region. [21], [20] and [12] present incremental
grid-based methods for general continuous monitoring NN queries, i.e., when
all objects move in a non-predictive manner; the last two works feature shared
execution techniques to handle multiple NN queries.

7 Conclusions

In this paper, we studied the efficient evaluation of points-based trajectory
search. After revisiting the existing methods (IKNN and GH/QE) for distance-
to-points search, which examine the trajectories in ascending order of their
distance to the queries points, we devised a hybrid algorithm which outper-
forms them by a wide margin. Then, we proposed a spatial range-based ap-
proach; our experiments on real-world trajectories showed that this approach
outperforms any NN-based method. Besides improving the performance of
distance-to-points search, we also introduced and investigated the evaluation
of a practical variant for points-based trajectory search, which also takes into
account the temporal aspect of the trajectories, as well as the order-aware case
of a query point sequence. Moreover, we introduced and studied the continuous
case of all points-based trajectory search variants, where the goal is to main-
tain the result set as updates to the query parameters and/or the trajectories

34 Shuyao Qi, et al.

appear. As a direction for future work, we plan to consider additional types
of annotated data on the trajectories in points-based search, such as textual
and social information.

References

1. Böhm, C., Berchtold, S., Keim, D.A.: Searching in high-dimensional spaces: Index struc-
tures for improving the performance of multimedia databases. ACM Comput. Surv.
33(3), 322–373 (2001)

2. Chen, Z., Shen, H.T., Zhou, X., Zheng, Y., Xie, X.: Searching trajectories by locations:
an efficiency study. In: SIGMOD, pp. 255–266 (2010)

3. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware. In:
PODS, pp. 102–113 (2001)

4. Frentzos, E., Gratsias, K., Pelekis, N., Theodoridis, Y.: Algorithms for nearest neighbor
search on moving object trajectories. GeoInformatica 11(2), 159–193 (2007)

5. Güntzer, U., Balke, W., Kießling, W.: Towards efficient multi-feature queries in hetero-
geneous environments. In: ITCC, pp. 622–628 (2001)

6. Güntzer, U., Balke, W.T., Kießling, W.: Optimizing multi-feature queries for image
databases. In: VLDB, pp. 419–428 (2000)

7. Hjaltason, G.R., Samet, H.: Distance browsing in spatial databases. ACM Trans.
Database Syst. 24(2), 265–318 (1999)

8. Ilyas, I.F., Beskales, G., Soliman, M.A.: A survey of top-k query processing techniques
in relational database systems. ACM Comput. Surv. 40(4) (2008)

9. Jagadish, H.V., Ooi, B.C., Tan, K., Yu, C., Zhang, R.: iDistance: An adaptive b+-tree
based indexing method for nearest neighbor search. ACM Trans. Database Syst. 30(2),
364–397 (2005)

10. Lee, J.G., Han, J., Whang, K.Y.: Trajectory clustering: A partition-and-group frame-
work. In: SIGMOD, pp. 593–604 (2007)

11. Li, X., Han, J., Lee, J.G., Gonzalez, H.: Traffic density-based discovery of hot routes in
road networks. In: SSTD, pp. 441–459 (2007)

12. Mouratidis, K., Hadjieleftheriou, M., Papadias, D.: Conceptual partitioning: An efficient
method for continuous nearest neighbor monitoring. In: SIGMOD, pp. 634–645 (2005)

13. Papadias, D., Tao, Y., Mouratidis, K., Hui, C.K.: Aggregate nearest neighbor queries
in spatial databases. ACM Trans. Database Syst. 30(2), 529–576 (2005)

14. Pfoser, D., Jensen, C.S., Theodoridis, Y.: Novel approaches to the indexing of moving
object trajectories. In: VLDB, pp. 395–406 (2000)

15. Qi, S., Bouros, P., Sacharidis, D., Mamoulis, N.: Efficient point-based trajectory search.
In: SSTD, pp. 179–196 (2015)

16. Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries. In: SIGMOD, pp.
71–79 (1995)

17. Song, Z., Roussopoulos, N.: K-nearest neighbor search for moving query point. In:
SSTD, pp. 79–96 (2001)

18. Tang, L.A., Zheng, Y., Xie, X., Yuan, J., Yu, X., Han, J.: Retrieving k-nearest neigh-
boring trajectories by a set of point locations. In: SSTD, pp. 223–241 (2011)

19. Tao, Y., Yi, K., Sheng, C., Kalnis, P.: Quality and efficiency in high dimensional nearest
neighbor search. In: SIGMOD, pp. 563–576 (2009)

20. Xiong, X., Mokbel, M.F., Aref, W.G.: Sea-cnn: Scalable processing of continuous k-
nearest neighbor queries in spatio-temporal databases. In: ICDE, pp. 643–654 (2005)

21. Yu, X., Pu, K.Q., Koudas, N.: Monitoring k-nearest neighbor queries over moving ob-
jects. In: ICDE, pp. 631–642 (2005)

22. Zhang, J., Zhu, M., Papadias, D., Tao, Y., Lee, D.L.: Location-based spatial queries.
In: SIGMOD, pp. 443–454 (2003)

23. Zheng, Y.: Trajectory data mining: An overview. ACM Trans. Intell. Syst. and Tech.
(2015)

24. Zheng, Y., Li, Q., Chen, Y., Xie, X., Ma, W.: Understanding mobility based on GPS
data. In: UbiComp, pp. 312–321 (2008)

Snapshot and Continuous Points-based Trajectory Search 35

25. Zheng, Y., Xie, X., Ma, W.: Geolife: A collaborative social networking service among
user, location and trajectory. IEEE Data Eng. Bull. 33(2), 32–39 (2010)

26. Zheng, Y., Zhang, L., Xie, X., Ma, W.Y.: Mining interesting locations and travel se-
quences from gps trajectories. In: WWW, pp. 791–800 (2009)

27. Zheng, Y., Zhou, X. (eds.): Computing with Spatial Trajectories. Springer (2011)

