
High Performance Parallel Summed-Area Table
Kernels for Multi-Core and Many-Core Systems

Angelos Papatriantafyllou1 and Dimitris Sacharidis2

1 Faculty of Informatics, Institute of Information Systems, Research Group Parallel
Computing, TU Wien, Vienna, Austria
papatriantafyllou@par.tuwien.ac.at

2 Faculty of Informatics, Institute of Software Technology and Interactive Systems,
E-Commerce Group, TU Wien, Vienna, Austria

dimitris@ec.tuwien.ac.at

Abstract. The summed-area table (SAT), also known as integral im-
age, is a data structure extensively used in computer graphics and vision
for fast image filtering. The parallelization of its construction has been
thoroughly investigated and many algorithms have been proposed for
GPUs. Generally speaking, state-of-the-art methods cannot efficiently
solve this problem in multi-core and many-core (Xeon Phi) systems due
to cache misses, strided and/or remote memory accesses. This work pro-
poses three novel cache-aware parallel SAT algorithms, which generalize
parallel block-based prefix-sums algorithms. In addition, we discuss 2D
matrix partitioning policies which play an important role in the efficient
operation of the cache subsystem. The combination of a SAT algorithm
and a partition is manually tuned according to the matrix layout and
the number of threads. Experimental evaluation of our algorithms on
two NUMA systems and Intel’s Xeon Phi, and for three datatypes (int,
float, double) by utilizing all system cores, shows, in all experimental set-
tings, better performance compared to the best known CPU and GPU
approaches (up to 4.55× on NUMA and 2.8× on Xeon Phi).

1 Introduction

The construction of a summed-area table (SAT) is a well-studied problem in
computer graphics and vision [1, 13, 14], with applications in texture filtering.
Since first introduced by Crow [4], several parallel implementations for GPUs [6,
9, 7] have been proposed. Given a matrix x of size n ×m, where n, m are the
number of rows and columns, respectively, the problem is to compute the sum
of all elements x(i, j), 0 ≤ i < n and 0 ≤ j < m, according to the formula:

y(i, j) =
∑

0≤r<i

∑
0≤c<j

x(r, c) (1)

SAT is the 2D generalization of the prefix-sums, or scan, problem, whose par-
allelization has also been extensively studied; the prefix-sums problem (assuming
+ as the associative operation) for an array x of length n is to compute the sums

Fig. 1. The 2D matrix partitioning policies: stripe (left), and tile (right). The grey
box indicates the shape of a block according to each partitioning

y(i) =
∑

0≤r<i x(r). Hence, a straightforward method to parallelize SAT is to
scan the matrix row by row, and for each row apply a parallel scan kernel from
the literature [5, 10–12] to compute its prefix-sums in-place, and then perform in
parallel vectorized additions with the prefix-sums of the previous row. Such an
approach has throughput bounded by the column size; each process unit (core,
warp), henceforth termed thread, operates on a block of size m

p , where p is the
number of threads. Hence, better performance is achieved with 2D blocks.

In literature, there have been several 2D block-based parallel SAT algorithms
for GPUs (Hensley et al. [6], Kasagi et al. [7], Nehab et al. [9] and Yan et al. [15])
and CPUs (Zhang [16]). These can be classified to those that perform within
a block prefix-sums along a single dimension [6, 15, 16], and those along both
dimensions, [9, 7]. Methods of the former use blocks of size n

p ×m (or m
p × n),

resulting in performance degradation when run on NUMA multi-core systems,
due to cache misses since blocks can be bigger than the LLC (Last Level Cache),
and remote memory accesses imposed by the block assignment, explained later
in the related work. On the other hand, algorithms of the latter use square
b × b blocks, and could thus suffer from strided memory accesses when row-
major matrix allocation is used on multi-core systems. In addition, the degree
of parallelism of [7] is bounded by the number of blocks of each anti-diagonal,

which ranges from 1 to min(n,m)
b − 1.

Contributions. Our research is motivated by two important facts: 1) the
performance limitations of square blocks used in [7, 9], and 2) the lack of per-
formance and scalability in current parallel SAT implementations for multi-core
systems. Both [7, 9] execute row- and column-wise prefix-sums, where the latter
are expensive, w.r.t. performance, due to strided memory accesses. To alleviate
this overhead, we propose to use non-square blocks of size br×bc, where br, bc are
the number of rows and columns, respectively, that are horizontally “stretched”
(while being vertically “squeezed”), i.e., bc > br. The in-parallel processed blocks
must fit into the LLC; thus, p× br × bc should not exceed the LLC size.

For the following discussion it helps to conceptually represent the matrix as
a sequence of stripes each having size br × m. Depending on the value of bc
relative to m, we distinguish two partitionings. In the first called stripe, bc is
equal to m

p , which means that all blocks processed in parallel lie within a stripe.
In the second and more general called tile, bc 6= m

p , meaning that a block
can span over two consecutive stripes, and thus correspond to a non-rectangular
area of the matrix. Fig. 1 depicts the two partitionings on the actual matrix,
and illustrates that a block in tile can be non-rectangular (shaded).

In addition, we propose three cache-aware parallel SAT algorithms, called
psat cpps, psat mcstl and psat sarpps, which process square and non-square
blocks, and are generalizations of three parallel block-based prefix-sums algo-
rithms: CPPS [10], MCSTL [12], and the method of Chatterjee et al. [3], which
we henceforth call SARPPS (Scan after Reduction Parallel Prefix-Sums). In par-
ticular, our algorithms operate in three phases: Phases 1 and 3 are devoted to
in-block computations, and in Phase 2 shared data are propagated across the
threads. They differ in the tasks performed in Phases 1 and 3, which are opti-
mized (e.g., using vectorization, loop-unrolling) based on the target system and
datatype. Depending on the matrix partitioning employed, certain tasks of Phase
2 are omitted resulting in distinct performance behavior for the same algorithm.

We carefully evaluate the performance and scalability of our kernels com-
pared to the state-of-the-art method for GPU by Kasagi et al. [7], and CPU by
Zhang [16]. We experiment on two NUMA systems (Westmere- and Opteron-
based) and Intel’s Xeon Phi, considering different datatypes (int, float, double),
while varying number of threads. Our results verify the limitations of existing
work when deployed in multi-core and many-core systems. In particular, when
utilizing almost the maximum available physical cores, the speedup of [7] drops,
and in certain settings down-scale behavior is observed. On the other hand, [16]
has the worst performance by a large margin in NUMA systems. In contrast, our
proposed kernels have consistent performance behavior across all systems and
datatypes, without requiring any modifications to the parallelization code, and in
almost all cases outperform the competitors. Specifically, our kernels have up to
4.55x and 3.25x more speedup in NUMA systems, and up to 1.5x and 2.8x in the
Xeon Phi system, compared to [16] and [7], respectively. Furthermore, we study
the main parameters (e.g., block row and column size, row- and column-wise
optimizations, matrix partitioning) and draw conclusions on how they influence
the performance of our kernels. In summary, the performance gains we measure
are due to the better utilization of the LLC, which is the direct result of larger
(non-rectangular) blocks that could not be exploited by previous works.

The rest of this paper is organized as follows. Section 2 describes and re-
views related works. Section 3 presents our algorithms in detail. Section 4 shows
performance and scalability results. Section 5 concludes the paper.

2 Related Work

Parallel prefix-sums kernels. CPPS [10], MCSTL [12], and SARPPS [3] are
block-based algorithms that solve the prefix-sums problem in parallel by splitting
the input array in p or p+1 blocks. Each block is processed in three phases, where
the first and third perform in-block computations, while the second propagates
shared data across threads. In Section 3, we discuss their generalization to SAT.

Parallel SAT kernels. There are two algorithmic classes for parallelizing
SAT. While, they both split the matrix in blocks assigned to individual threads,
they differ in their in-block computations. The first class, termed 1D, is to per-

form either row- or column-wise prefix-sums, while the second, termed 2D, is to
perform prefix-sums in both dimensions, i.e., compute the block’s SAT.

Previous 1D approaches on GPUs (Hensley et al. [6] and Yan et al. [15]) use
2-phase algorithms to compute in parallel first all horizontal and later all vertical
prefix-sums. In [6], they use recursive doubling for computing the prefix-sums
of both phases, whereas, in [15] they exploit vectorization over a column-major
order input matrix by using an auxiliary n × m matrix. Similarly, Zhang [16]
present a 1D method for multi-core systems. Noticeably, the performance of all
1D approaches is expected to be penalized on multi-core systems due to cache-
unawareness, because blocks may exceed the LLC. Particularly on NUMA sys-
tems, it is expected more performance degradation due to NUMA-unawareness,
since the data needed in Phase 2 may reside in remote NUMA nodes.

Nehab et al. [9] present a generalization of the SARPPS algorithm for GPUs,
which works quite similar to our psat sarpps algorithm. The input matrix is
partitioned in blocks of size b× b, where b matches the warp size of an SM (i.e.
b = 32). Each warp computes the SAT of a block with the help of the last block
row and block column of the other warp’s. Their approach could compose and
process also rectangular blocks but it is unable to exploit non-rectangular blocks.

Kasagi et al. [7] present a different 2D approach, called 1R1W, where each
matrix element is read from and written to DRAM only once. To accomplish
that, an n× n matrix is partitioned into n

b ×
n
b blocks of equal b× b size, where

b ≤ n
p , and processed anti-diagonally in 2n

b − 1 steps. In the kth step, where

0 ≤ k < 2n
b − 1, there are min(p, k + 1) active threads, where each computes

its own block by using elements of the adjacent left, top and diagonal blocks.
Before entering each step, the threads must synchronize at a global barrier.
This approach is expected to exhibit poor performance and scalability in NUMA
systems for very large p due to two reasons. First, while increasing p more NUMA
nodes are activated and subsequently, more LLCs can be utilized. However, in
this approach the block size is bounded by n, implying that the increase of
p leads to smaller block sizes and eventually, the LLC footprint is reduced.
Exploiting less LLC footprint means that the CPUs process faster the cached
blocks and the kernel’s performance is exposed to the main memory latency
overhead. Second, while increasing p it would need more synchronization steps
to reach the maximum degree of parallelism.

In-block optimizations. Both 1D and 2D approaches benefit from prefix-
sums optimizations. Zhang [16] optimizes the row-wise prefix-sums with an algo-
rithm called enhanced parallelism, which breaks each row in groups of 6 elements;
each group is computed by independent prefix-sums pairs. However, such a tech-
nique is not efficient for large vector widths machines like Xeon Phi due to its
lack of leveraging vector instructions. Previous works on GPUs [6, 9, 15] exploit
the SIMT (Single Instruction Multiple Thread) model in order to vectorize the
row-wise prefix-sums. Unfortunately, SIMT is not compatible with the SIMD
(Single Instruction Multiple Data) programming model used in CPUs.

A SIMD-based approach is provided by OpenCV (Open Source Computer
Vision) [2], which is a computer vision and machine learning library. This ap-

Fig. 2. Phase 1: each of the p threads is assigned a distinct b × b block of the n × m
matrix and runs a sequential SAT kernel. The computed last block row and block
column are copied into the blr and blc shared buffers, respectively. All the blocks fit
into the system’s LLC. At the end of this phase, thread 0 has completed its block

proach uses the SSE instruction set, which has a limited target group and works
under specific input constraints (short numbers). Thus, it is not suitable for
Xeon Phi systems and it is not applicable to arbitrary datatypes.

From the above discussion, it becomes clear that new optimizations tech-
niques are necessary for multi-core systems. We remark that the sequential (in-
block) SAT computation in all 2D methods is based on only one of the three
known basic approaches for computing SAT [8]. In Section 3, we optimize this
approach by further segmenting the assigned block to leverage deep cache hier-
archies, investigate prefix-sums optimizations presented in [10], and also explore
the optimization space of another basic SAT approach.

3 Parallel Summed-Area Table Kernels (PSAT)

Our algorithms construct the SAT of a matrix x in-place, with an associative
operator + over the basic type, by splitting x in 2D blocks. The blocks are formed
according to stripe and tile partitionings, and are further tuned to meet load-
balancing requirements according to each PSAT kernel, later explained. Each
block is assigned only once to a unique thread and processed in-cache across
some or all the algorithmic phases, as illustrated in Fig. 2–4. In addition, the
threads use two shared buffers, called blr and blc, to propagate their last row
and column, respectively, across all threads. For simplicity and readability, we
use square blocks to describe our implementations.

3.1 Implementations

Psat cpps. This algorithm is the generalization of CPPS [10], which works as
follows: 1) Each thread computes the prefix-sums for its assigned block, 2) an
inclusive scan is computed over the last element of all the assigned chunks, and 3)
each thread, except for thread 0, propagates a previous corresponding cumulative
sum to its own elements; thread 0 is assigned and process a new block.

Fig. 3. Phase 2: shared data propagation. Each thread collects the cumulative sum of
the last element of each blr at its left and propagates it to its own blr (Phase 2.1).
Subsequently, in parallel column-wise prefix-sums are computed by adding the elements
of all the blr’s, from top to bottom, including the last blr’s from the previous group
of cached blocks (Phase 2.2). In Phase 2.3, each thread computes and stores locally
the cumulative sums of the blc’s at its left

In Phase 1 of psat cpps (Fig. 2), each thread is assigned a b × b block,
on which a sequential SAT is invoked. At the completion of Phase 1, thread 0
is the only thread that has successfully computed its own block. Subsequently,
each thread copies the last computed block row and block column to the shared
buffers blr and blc, respectively, and synchronizes with the others at a global
barrier. The role of these buffers is crucial. They hold the fragments of the final
product computed later at Phase 3. For instance, thread p− 1 needs to sum up
all the information from the blc’s and blr’s belonged to the threads accessing
the matrix rows and matrix columns which are equal and less than p− 1’s.

Phase 2 (Fig. 3) is devoted to process and propagate the shared data from
the buffers blr and blc across threads. The phase is split in three parts, where
the first two are responsible to process the blr’s, and the third part handles to
process the blc’s. Therefore, each thread computes the cumulative sum of the
last element of the blr’s related to the threads at its left. Subsequently, the sum
is used to propagate the elements of its own blr (Phase 2.1). Then, the threads
synchronize once again before passing to Phase 2.2, where the aggregation of each
shared-row blr’s is split in p segments of size m

p and each segment is assigned

to each thread. In total, each thread has to process pb
m segments, on which

is computed the column-wise inclusive prefix-sums by adding the ith element,
i = 0, 1, ..., m

p − 1, of the jth segment, j = 0, 1, ..., pb
m − 1, with the ith element of

Fig. 4. Phase 3: The adjacent top and left buffers are used by each thread to update
its block. Thread 0 is assigned a new block and computes the SAT product

the j + 1th segment, and so on. The threads synchronize again before accessing
Phase 2.3, where each thread computes the reduction of the elements of the blc’s
of the threads located at its left by adding the ith element, i = 0, 1, ..., b − 1 of
the jth blc with the ith element of the j + 1th blc, j starts with the id of the
thread being the first at its left and ends with the id of the previous thread. It
is implied that a barrier is unnecessary at this point. The reductions are stored
in local buffers, and are accessed in Phase 3 locally by their associate thread.

Finally, in Phase 3 (Fig. 4), each thread uses its local blc and the updated blr

(top) to construct the table by propagating their values to its block elements. In
addition, thread 0 is assigned a new block, and invokes a sequential SAT kernel
by adding at the same time the elements of the left and top buffers. After careful
benchmarking, this new block must be a factor of 4 smaller; the block is fetched
from DRAM while the other threads work on cached data.

Psat sarpps. SARPPS [3] generalizes psat sarpps kernel, and works as
follows: 1) each thread first acquires the total sum of its elements, 2) an inclusive
scan is performed over the previous sums, and 3) each thread computes the
prefix-sums of its elements by adding first the corresponding sum from Phase 2.

In Phase 1, the threads do not invoke a sequential SAT but a 2D reduction
kernel, which computes the sums of every block row and block column by storing
the sum of the ith block row, i = 0, 1, ..., b − 1, into the ith cell of the blc

buffer and the jth block column, j = 0, 1, ..., b − 1, into the jth cell of the blr

buffer. Subsequently, in Phase 2, the threads are grouped according to which of
them access the same matrix rows. The threads assigned non-rectangular blocks
(refer to tile in Fig. 1) are potential members of two groups. However, we
do not permit “double membership”, and we place those threads to the groups
with the least members. Consecutively, each group runs a parallel prefix-sums
on its elements by invoking CPPS [10], configured with a two-level-nested-loop
sequential prefix-sums kernel, described in [10]. Phases 2.2 and 2.3 are executed
as before (refer to psat cpps). In Phase 3, each thread updates its first block
column and row by using the computed data of its local blc and the shared blr

(left), respectively, and subsequently it executes a sequential SAT kernel.
Psat mcstl. This algorithm is the generalization of the MCSTL [12] algo-

rithm, which resembles SARPPS. However, they are distinguishable from each
other. In MCSTL’s Phase 1, thread 0 computes the prefix-sums of a block, which
differs from the block that it computes its prefix-sums in Phase 3.

In Phase 1 of psat mcstl, a block of size b
2×

b
2 is assigned to thread 0 and p−1

blocks of size b×b to the other threads. Thread 0 invokes a sequential SAT kernel
and the others a 2D reduction kernel for their blocks. The block of thread 0 is a
factor of 4 smaller than the other blocks because of the heavyweight computation
of the sequential SAT compared to the 2D reduction task. The results of the last
computed block row and column are stored again in the blr and blc buffers,
respectively. At that time, thread 0 has produced the final result for its block.
Phase 2 can be executed as described in psat sarpps. However, since thread 0
blc holds already the final values it should not take part in Phase 2. Instead, we
re-segment the input of its group and assign a task to thread 0. Phases 2.2 and
2.3 are executed as before (refer to psat cpps). Consecutively, Phase 3 operates
as described in psat_sarrps, however, thread 0 employs a different block; for
better load balancing this block size must be b× b

2 .
Optimizations. Due to space constraints, we briefly describe the optimiza-

tions that took place for improving the performance of the sequential SAT ker-
nel used by our PSAT kernels. We have optimized two basic SAT approaches,
described in [8]; one is used by [7, 9]. Since both approaches compute prefix-
sums row-wisely, we first tested several optimized sequential prefix-sums ker-
nels, presented in [10]. In addition, both approaches also compute the prefix-
sums column-wisely, which can be easily vectorized. However, the size of the
vectorized rows can be bigger than the underlying L2/L1 cache size. Thus, we
considered performance improvements through further input segmentation. The
new formed sub-blocks have 2–4 rows each, and the column size varies according
to the architecture. We investigated improving the ILP and the spatial locality
of the column-wise prefix-sums. The former through hard-coding the execution
of 2–4 independent row-wise prefix-sums of each sub-block, and the latter by
storing consecutively in memory the row-wise results (in vector-width chunks).

3.2 Matrix Partitionings

Conceptually, the matrix is composed by a sequence of stripes of size br × m.
Accordingly, our PSAT kernels split the stripes in groups of blocks whose cu-
mulative size does not exceed the aggregated system’s LLC. Subsequently, each
group is processed in parallel by p threads. In stripe partitioning (Fig. 1 (left)),
the kernels process one stripe at a time by computing groups of blocks located
in one stripe, so that, bc× p ≤ m. On the contrary, in tile (Fig. 1 (right)), the
formed groups of blocks may span across several stripes, as long as bc ≤ m.

Stripe affects the functionality of our algorithms. In particular, Phases 2.1
and 2.2 are omitted since all threads operate within the same stripe, where the
column-wise propagation is omitted. The reason is that each thread is assigned
the same matrix columns across different stripes, and thus can directly access
the last block row of the previous stripe without needing the blr buffer.

Regarding the scalability of our kernels, we make the following observations.
Increasing the number of threads (p) in stripe means that the block column
size (bc) decreases resulting in the following trade-off: we can increase the br
(wider stripe) to improve the LLC utilization at the expense of multiple strided

Table 1. Specifications of the three systems (Mars, Saturn and MIC)

System
CPU

(model & freq.)
cores # cores/NUMA # NUMA nodes LLC/NUMA L2 L1

Mars
Intel Xeon E7-8850

2.0 GHz
80-hyperthreaded 10 8 24576K 256K 32K

Saturn
AMD Opteron 6168

1.9 GHz
48 6 8 5118K 512K 32K

MIC
Intel Xeon Phi 5110P

1.059 GHz
60-hyperthreaded - - only L2 cache 512K 64K

memory accesses, or keep the LLC utilization low, thus avoiding this overhead
(strided accesses). In NUMA systems, this effect is amplified since the LLC size
increases by activating more NUMA nodes. The benefit of stripe over tile is
the decrease of the amount of propagated shared data. Thus, we expect stripe
to perform better for small p. On the contrary, tile is not affected by this trade-
off and promises better scalability in both multi-core and many-core systems.

4 Evaluation

We implemented our PSAT kernels in C with Pthreads and tested on three
systems: two NUMA systems, called Mars and Saturn, and one Intel’s Xeon Phi,
called MIC. Detailed system information are listed in Table 1. All benchmarks
are compiled with Intel’s ICC 14.0.1 with -O3 optimization level and executed
30 times. The results show median values. Due to space limitations, we report
only results for a specific problem size; similar behavior is observed in other
problem sizes. Each kernel is configured and tested with different sequential
SAT kernels and block sizes. We only report results for the best configurations.
The experiments show the performance and scalability behavior of our PSAT
kernels, comparing against 1R1W [7] and Zhang [16]. For a fair comparison, we
re-implemented 1R1W for x86 systems according to [7], tested with rectangular
blocks, and applied x86-based sequential optimizations. For the testbeds, in-
parallel first-touch page placement was applied and consecutive thread pinning.

PSATs performance. Fig. 5 (left) depicts the performance (execution time
in seconds) of our PSAT kernels (psat cpps, psat sarpps, psat mcstl). Each
kernel has been separately tested with tile and stripe partitionings. In addi-
tion, Fig. 5 (right) depicts a breakdown phase analysis of our PSATs in stripe

mode by reporting the sum of the execution time (in milliseconds) of Phases 1
and 3 when computing p (= #threads) blocks. All the testbeds construct the
SAT of a 12K×12K integer matrix on Mars with different number of threads.
Due to quantitatively similar results, other systems and datatypes are omitted.

Fig. 5 (left) justifies our assumptions about the behavior of both partitionings
independently of PSAT kernel. The stripe behaves better for small number of
threads due to less computations, and the tile is better for large number of
threads due to better cache utilization and less synchronization steps caused
by handling bigger block sizes. In most cases, psat cpps outperforms the other
kernels, even though Phase 1 of psat sarpps is faster, due to the reduction

Problem size: 12K×12K elements, System: Mars, Datatype: int

best sequential kernel

0.0

0.1

0.2

2 4 8 16 32 64 80
threads

E
xe

cu
tio

n
tim

e
(in

 s
)

PSAT Kernels
psat_cpps_stripe
psat_cpps_tile
psat_mcstl_stripe
psat_mcstl_tile
psat_sarpps_stripe
psat_sarpps_tile

psat_cpps psat_mcstl psat_sarpps

0.0

0.5

1.0

1.5

2.0

2 4 8 16326480 2 4 8 16326480 2 4 8 16326480

threads

E
xe

cu
tio

n
tim

e
fo

r
pr

oc
es

si
ng

 p
 (

=
 #

th
re

ad
s)

 b
lo

ck
s

(in
 m

s)

Phases
phase1
phase3

Fig. 5. Performance comparison (left) between our three PSAT kernels (psat cpps,
psat sarpps, psat mcstl) configured with the two partitionings (tile, stripe), and
breakdown phase analysis (right) of our PSATs in stripe mode, which reports the sum
of the execution time of Phases 1 and 3 for computing p (= #threads) blocks. The
testbeds run on Mars for different number of threads and a 12K×12K integer matrix

computations being auto-vectorized by gcc and icc compilers, as depicted in
the breakdown analysis of Fig. 5 (right). Therefore, our analysis suggests that
running a sequential SAT kernel first leads to better performance.

PSATs speedup. Fig. 6 depicts the absolute speedup comparison between
1R1W, Zhang and our best performing PSAT for each of the tile and stripe

partitionings. The results are collected by all our systems after composing the
SAT of a 12K×12K matrix separately for integers, floats and doubles. In addi-
tion, the best performing sequential kernel that we have is selected as a baseline.

Fig. 6 shows that in all cases our kernels outperform 1R1W and Zhang for
large number of threads (p) in tile. In particular, our kernels run 1.2×–3.25×
faster than 1R1W (all datatypes) with all system cores: 1) 3.25× in Mars, 2)
1.8× in Saturn and 3) 2.8× in MIC. Nonetheless, 1R1W behaves slightly better
for small p since it spends zero time on processing shared data, and needs fewer
synchronization steps until all threads are utilized in parallel. Regarding the
performance of Zhang in MIC, it is almost equal to that of our best kernel for
integers, but it is 1.5× and 1.2× slower for floats and doubles, respectively. In
addition, Zhang proves to be inefficient in NUMA systems, for reasons discussed
in Section 2. For instance, with all system cores, Zhang is slower by 3.25× (inte-
gers and floats) and 3.5× (doubles) on Mars, and 4.55× (integers and floats), and
4.15× (doubles) on Saturn. In conclusion, we observe that the best performance
of our kernels, in tile with all cores, is achieved when the block column size (bc)
is smaller than the matrix column size by 1.67× (integers and floats) and 3.3×
(doubles) in Mars, 4× (all datatypes) in Saturn and 5× (doubles and floats) and
10× (integers) in MIC. In addition, the block row size is by far smaller than the
bc in NUMA (57×–114×), and still quite smaller in MIC (1.2×–4.8×).

Problem size: 12K×12K elements

●
●

●

●
●

●

0

5

10

15

20

25

30

2 4 8 16 32 60
threads

A
bs

ol
ut

e
S

pe
ed

up

PSAT Kernels
● 1R1W

psat_stripe
psat_tile
Zhang

MIC int

●

●

●

● ●
●

0

5

10

15

20

25

2 4 8 16 32 60
threads

A
bs

ol
ut

e
S

pe
ed

up

PSAT Kernels
● 1R1W

psat_stripe
psat_tile
Zhang

MIC float

●
●

●

●

●
●

0

5

10

15

20

25

2 4 8 16 32 60
threads

A
bs

ol
ut

e
S

pe
ed

up

PSAT Kernels
● 1R1W

psat_stripe
psat_tile
Zhang

MIC double

●
●

●

●

● ●

0

2

4

6

8

10

12

2 4 8 16 32 48
threads

A
bs

ol
ut

e
S

pe
ed

up

PSAT Kernels
● 1R1W

psat_stripe
psat_tile
Zhang

Saturn int

●
●

●

●

● ●

0

2

4

6

8

10

12

14

2 4 8 16 32 48
threads

A
bs

ol
ut

e
S

pe
ed

up
PSAT Kernels

● 1R1W
psat_stripe
psat_tile
Zhang

Saturn float

●
●

●

●

●

●

0

2

4

6

8

10

12

2 4 8 16 32 48
threads

A
bs

ol
ut

e
S

pe
ed

up

PSAT Kernels
● 1R1W

psat_stripe
psat_tile
Zhang

Saturn double

●
●

●

●

● ●
●

0

2

4

6

8

10

12

14

16

18

20

2 4 8 16 32 64 80
threads

A
bs

ol
ut

e
S

pe
ed

up
PSAT Kernels

● 1R1W
psat_stripe
psat_tile
Zhang

Mars int

●
●

●
●

●
● ●

0

2

4

6

8

10

12

14

16

18

2 4 8 16 32 64 80
threads

A
bs

ol
ut

e
S

pe
ed

up

PSAT Kernels
● 1R1W

psat_stripe
psat_tile
Zhang

Mars float

●
●

●

●

●
● ●

0

2

4

6

8

10

12

14

16

18

2 4 8 16 32 64 80
threads

A
bs

ol
ut

e
S

pe
ed

up

PSAT Kernels
● 1R1W

psat_stripe
psat_tile
Zhang

Mars double

Fig. 6. Absolute speedup comparison between 1R1W kernel [7], Zhang’s [16], and our
best performing PSAT for each of the two partitionings: tile and stripe running on
all systems. The kernels construct a 12K×12K matrix for three datatypes (int, float,
double). The best performing sequential kernel that we have is selected as a baseline

5 Conclusions and Future Work

In this paper, we present three new cache-aware parallel SAT (Summed-Area
Table) algorithms, called psat cpps, psat sarpps and psat mcstl, for many-
core and multi-core systems. Our algorithms are generalizations of three block-
based parallel prefix-sums algorithms, and can process rectangular and non-
rectangular blocks in order to utilize better the cache subsystem. We provide
performance and speedup results after comparing against Kasagi et al. [7] and
Zhang [16]. Our next step will be designing an auto-tuning mechanism capable of
finding the best configurations (parallel and sequential SAT, matrix partitioning,
etc.) for different problem sizes in order to increase system efficiency.

6 Acknowledgements

We would like to thank the members of the TU Wien Research Group Parallel
Computing and the anonymous reviewers for their valuable comments.

References

1. Bay, H., Ess, A., Tuytelaars, T., Gool, L.J.V.: Speeded-Up Robust Features
(SURF). Computer Vision and Image Understanding 110(3), 346–359 (2008)

2. Bradski, G.R., Kaehler, A.: Learning OpenCV - Computer Vision with the
OpenCV Library: Software That Sees. O’Reilly (2008)

3. Chatterjee, S., Blelloch, G.E., Zagha, M.: Scan Primitives for Vector Computers.
In: Proceedings Supercomputing’90. pp. 666–675 (1990)

4. Crow, F.C.: Summed-Area Tables for Texture Mapping. In: Proceedings of the
11th Annual conference on Computer Graphics and Interactive Techniques (SIG-
GRAPH). pp. 207–212 (1984)

5. Dotsenko, Y., Govindaraju, N.K., Sloan, P., Boyd, C., Manferdelli, J.: Fast Scan
Algorithms on Graphics Processors. In: Proceedings of the 22nd Annual Interna-
tional Conference on Supercomputing (ICS). pp. 205–213 (2008)

6. Hensley, J., Scheuermann, T., Coombe, G., Singh, M., Lastra, A.: Fast Summed-
Area Table Generation and its Applications. Computer Graphics Forum 24(3),
547–555 (2005)

7. Kasagi, A., Nakano, K., Ito, Y.: Parallel Algorithms for the Summed Area Table on
the Asynchronous Hierarchical Memory Machine, with GPU Implementations. In:
Proceedings of the 43rd International Conference on Parallel Processing (ICPP).
pp. 251–260 (2014)

8. Kisacanin, B.: Integral Image Optimizations for Embedded Vision Applications.
In: Proceedings of the 2008 IEEE Southwest Symposium on Image Analysis and
Interpretation (SSIAI). pp. 181–184 (2008)

9. Nehab, D., Maximo, A., Lima, R.S., Hoppe, H.: GPU-Efficient Recursive Filtering
and Summed-Area Tables. ACM Transactions on Graphics 30(6), 176 (2011)

10. Papatriantafyllou, A.: Energy Characterization and Optimization of Parallel
Prefix-Sums Kernels. In: Euro-Par 2015: Parallel Processing Workshops - Euro-
Par 2015 International Workshops (2015)

11. Sengupta, S., Harris, M., Garland, M.: Efficient Parallel Scan Algorithms for GPUs.
Tech. rep., NVIDIA Corporation (2008)

12. Singler, J., Sanders, P., Putze, F.: MCSTL: The Multi-Core Standard Template
Library. In: Proceedings of the 13th International Euro-Par Conference on Parallel
Processing. pp. 682–694 (2007)

13. Viola, P.A., Jones, M.J.: Rapid Object Detection using a Boosted Cascade of Sim-
ple Features. In: Proceedings of the 2001 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR). pp. 511–518 (2001)

14. Viola, P.A., Jones, M.J., Snow, D.: Detecting Pedestrians Using Patterns of Motion
and Appearance. International Journal of Computer Vision 63(2), 153–161 (2005)

15. Yan, S., Zhang, Y., Long, G.: Summed-area Table Algorithm Optimization Based
on the OpenCL. In: Proceedings of the ATIP/A*CRC Workshop on Accelerator
Technologies for High-Performance Computing: Does Asia Lead the Way? (2012)

16. Zhang, N.: Working towards Efficient Parallel Computing of Integral Images on
Multi-Core Processors. In: Proceedings of the 2nd International Conference on
Computer Engineering and Technology (ICCET). pp. V2–30–V2–34 (2010)

