
Finding Desirable Objects under Group Categorical
Preferences ?

Nikos Bikakis · Karim Benouaret ·
Dimitris Sacharidis

-

Abstract Considering a group of users, each specifying individual preferences over
categorical attributes, the problem of determining a set of objects that are objec-
tively preferable by all users is challenging on two levels. First, we need to deter-
mine the preferable objects based on the categorical preferences for each user, and
second we need to reconcile possible conflicts among users’ preferences. A näıve
solution would first assign degrees of match between each user and each object,
by taking into account all categorical attributes, and then for each object com-
bine these matching degrees across users to compute the total score of an object.
Such an approach, however, performs two series of aggregation, among categorical
attributes and then across users, which completely obscure and blur individual
preferences. Our solution, instead of combining individual matching degrees, is to
directly operate on categorical attributes, and define an objective Pareto-based
aggregation for group preferences. Building on our interpretation, we tackle two
distinct but relevant problems: finding the Pareto-optimal objects, and objectively
ranking objects with respect to the group preferences. To increase the efficiency
when dealing with categorical attributes, we introduce an elegant transformation
of categorical attribute values into numerical values, which exhibits certain nice
properties and allows us to use well-known index structures to accelerate the so-
lutions to the two problems. In fact, experiments on real and synthetic data show
that our index-based techniques are an order of magnitude faster than baseline
approaches, scaling up to millions of objects and thousands of users.

Keywords Group recommendation · Rank aggregation · Preferable objects ·
Skyline queries · Collective dominance · Ranking scheme · Recommender systems

?To appear in Knowledge and Information Systems Journal (KAIS), 2015

Nikos Bikakis
National Technical University of Athens, Greece & ATHENA Research Center, Greece
E-mail: bikakis@dblab.ntua.gr

Karim Benouaret
Inria Nancy, France
E-mail: karim.benouaret@inria.fr

Dimitris Sacharidis
Technische Universität Wien, Austria
E-mail: dimitris@ec.tuwien.ac.at

ar
X

iv
:1

50
9.

08
93

7v
1

 [
cs

.D
B

]
 2

9
Se

p
20

15

2 Nikos Bikakis et al.

1 Introduction

Recommender systems have the general goal of proposing objects (e.g., movies,
restaurants, hotels) to a user based on her preferences. Several instances of this
generic problem have appeared over the past few years in the Information Re-
trieval and Database communities; e.g., [1,38,17,77]. More recently, there is an
increased interest in group recommender systems, which propose objects that are
well-aligned with the preferences of a set of users [40,57,20,18]. Our work deals
with a class of these systems, which we term Group Categorical Preferences (GCP),
and has the following characteristics. (1) Objects are described by a set of categor-
ical attributes. (2) User preferences are defined on a subset of the attributes. (3)
There are multiple users with distinct, possibly conflicting, preferences. The GCP
formulation may appear in several scenarios; for instance, colleagues arranging for
a dinner at a restaurant, friends selecting a vacation plan for a holiday break.

Table 1 New York Restaurants

Attributes

Restaurant Cuisine Attire Place Price Parking

o1 Eastern Business casual Clinton Hill $$$ Street
o2 French Formal Time Square $$$$ Valet
o3 Brazilian Smart Casual Madison Square $$ No
o4 Mexican Street wear Chinatown $ No

Table 2 User preferences

Preferences

User Cuisine Attire Place Price Parking

u1 European Casual Brooklyn $$$ Street
u2 French, Chinese – – – Valet
u3 Continental – Time Square, Queens – –

To illustrate GCP, consider the following example. Assume that three friends
in New York are looking for a restaurant to arrange a dinner. Suppose that, the
three friends are going to use a Web site (e.g., Yelp1) in order to search and fil-
ter restaurants based on their preferences. Note that in this setting, as well as in
other Web-based recommendation systems, categorical description are prevalent
compared to numerical attributes. Assume a list of available New York restaurants,
shown in Table 1, where each is characterized by five categorical attributes: Cui-

sine, Attire, Place, Price and Parking. In addition, Figure 1 depicts the hierarchies
for these attributes. Attire and Parking are three-level hierarchies, Cuisine and
Place are four-level hierarchies, and Price (not shown in Figure 1) is a two-levels
hierarchy with four leaf nodes ($, ..., $$$$). Finally, Table 2 shows the three friends’
preferences. For instance, u1 prefers European cuisine, likes to wear casual clothes,
and prefers a moderately expensive ($$$) restaurant in the Brooklyn area offering

1 www.yelp.com

Finding Desirable Objects under Group Categorical Preferences ? 3

Attire
[0, 4)

[3, 4)
Street wear Casual

Business
 casual

Formal
[0, 1)

[1, 2) [2, 3)

[1, 3)

Smart
 casual

(a) Attire attribute

Cuisine

Asian European Latin-American

Chinese Continental Eastern Chilian Mexican Brazilian

[0, 9)

[0, 2) [2, 6) [6, 9)

[0, 1) [1, 2) [6, 7)[2, 4) [4, 6) [7, 8) [8, 9)

French Italian Greek Austrian
[2, 3) [3, 4) [4, 5) [5, 6)

Japanese

(b) Cuisine attribute

 Garage

Parking

Yes No

 Private
Lot

 Valet Street

(c) Parking attribute

Southern

Manhattan Staten
Island

Queens BrooklynBronx

South NorthwesternUptownDowntownMidtown

Koreatown Times
Square

Madison
Square

East
Village

Chinatown DUMBOClinton
Hill

Downtown
Brooklyn

New York

Central

(d) Place attribute (part of New York places)

Fig. 1 Attribute hierarchies

also street parking. On the other hand, u2 likes French and Chinese cuisine, and
prefers restaurants offering valet parking, without expressing any preference on
attire, price and place.

Observe that if we look at a particular user, it is straightforward to determine
his ideal restaurant. For instance, u1 clearly prefers o1, while u2 clearly favors
o2. These conclusions per user can be reached using the following reasoning. Each
preference attribute value uj .Ak is matched with the corresponding object attribute
value oi.Ak using a matching function, e.g., the Jaccard coefficient, and a matching
degree per preference attribute is derived. Given these degrees, the next step is to
“compose” them into an overall matching degree between a user uj and an object
oi. Note that several techniques are proposed for “composing” matching degrees;
e.g., [57,56,43,77,26]. The simplest option is to compute a linear combination,
e.g., the sum, of the individual degrees. Finally, alternative aggregations models
(e.g., Least-Misery, Most-pleasure, etc.) could also be considered.

Returning to our example, assume that the matching degrees of user u1 are:
〈1/2, 1/2, 1/6, 1, 1〉 for restaurant o1, 〈1/4, 0, 0, 0, 0〉 for o2, 〈0, 1/2, 0, 0, 0〉 for o3, and
〈0, 0, 0, 0, 0〉 for o4 (these degrees correspond to Jaccard coefficients computed as
explained in Section 3). Note that for almost any “composition” method employed
(except those that only, or strongly, consider the Attire attribute), o1 is the most
favorable restaurant for user u1. Using similar reasoning, restaurant o2, is ideal for
both users u2, u3.

When all users are taken into consideration, as required by the GCP formula-
tion, several questions arise. Which is the best restaurant that satisfies the entire
group? And more importantly, what does it mean to be the best restaurant? A simple
answer to the latter, would be the restaurant that has the highest “composite”
degree of match to all users. Using a similar method as before, one can define a
collective matching degree that “composes” the overall matching degrees for each

4 Nikos Bikakis et al.

user. This interpretation, however, enforces an additional level of “composition”,
the first being across attributes, and the second across users. These compositions
obscure and blur the individual preferences per attribute of each user.

To some extent, the problem at the first “composition” level can be mitigated
by requiring each user to manually define an importance weight among his specified
attribute preferences. On the other hand, it is not easy, if possible at all, to assign
weights to users, so that the assignment is fair. There are two reasons for this.
First, users may specify different sets of preference attributes, e.g., u1 specifies all
five attributes, while u2 only Cuisine and Parking. Second, even when considering
a particular preference attribute, e.g., Cuisine, users may specify values at different

levels of the hierarchy, e.g., u1 specifies a European cuisine, while u2 French cuisine,
which is two levels beneath. Similarly, objects can also have attribute values defined
at different levels. Therefore, any “composition” is bound to be unfair, as it may
favor users with specific preferences and objects with detailed descriptions, and
disfavor users with broader preferences and objects with coarser descriptions. This
is an inherent difficulty of the GCP problem.

In this work, we introduce the double Pareto-based aggregation, which provides an
objective and fair interpretation to the GCP formulation without “compositing”
across preference attributes and users. Under this concept, the matching between
a user and an object forms a matching vector. Each coordinate of this vector corre-
sponds to an attribute and takes the value of the corresponding matching degree.
The first Pareto-based aggregation is defined over attributes and induces a partial
order on these vectors. Intuitively, for a particular user, the first partial order ob-
jectively establishes that an object is better, i.e., more preferable, than another, if
it is better on all attributes. Then, the second Pareto-based aggregation, defined
across users, induces the second and final partial order on objects. According to
this order, an object is better than another, if it is more preferable according to
all users.

Based on the previous interpretation of the GCP formulation, we seek to solve
two distinct problems. The first, which we term the Group-Maximal Categorical

Objects (GMCO) problem, is finding the set of maximal, or Pareto-optimal, objects
according to the final partial order. Note that since this order is only partial, i.e.,
two objects may not be comparable, there may exist multiple objects that are
maximal; recall, that an object is maximal if there exists no other object that
succeeds it in the order considered. In essence, it is the fact that this order is
partial that guarantees objectiveness. The GMCO problem has been tackled in
our previous work [15].

The second problem, which we term the Group-Ranking Categorical Objects

(GRCO) problem, consists of determining an objective ranking of objects. Re-
call that the double Pareto-based aggregation, which is principal in guaranteeing
objectiveness, induces only a partial order on the objects. On the other hand, rank-
ing implies a total order among objects. Therefore, it is impossible to rank objects
without introducing additional ordering relationships among objects, which how-
ever would sacrifice objectiveness. We address this contradiction, by introducing
an objective weak order on objects. Such an order allows objects to share the same
tier, i.e., ranked at the same position, but defines a total order among tiers, so
that among two tiers, it is always clear which is better.

The GMCO problem has at its core the problem of finding maximal elements
according to some partial order. Therefore, it is possible to adapt an existing al-

Finding Desirable Objects under Group Categorical Preferences ? 5

gorithm to solve the core problem, as we discuss in Section 4.2. While there exists
a plethora of main-memory algorithms, e.g., [47,13], and more recently of external
memory algorithms (termed skyline query processing methods), e.g., [19,27,66],
they all suffer from two performance limitations. First, they need to compute the
matching degrees and form the matching vectors for all objects, before actually
executing the algorithm. Second, it makes little sense to apply index-based meth-
ods, which are known to be the most efficient, e.g., the state-of-the-art method of
[66]. The reason is that the entries of the index depend on the specific instance,
and need to be rebuilt from scratch when the user preferences change, even though
the description of objects persists.

To address these limitations, we introduce a novel index-based approach for
solving GMCO, which also applies to GRCO. The key idea is to index the set of
objects that, unlike the set of matching vectors, remains constant across instances,
and defer expensive computation of matching degrees. To achieve this, we apply a
simple transformation of the categorical attribute values to intervals, so that each
object translates to a rectangle in the Euclidean space. Then, we can employ a
space partitioning index, e.g., an R∗-Tree, to hierarchically group the objects. We
emphasize that this transformation and index construction is a one-time process,
whose cost is amortized across instances, since the index requires no maintenance,
as long as the collection of objects persists. Based on the transformation and the
hierarchical grouping, it is possible to efficiently compute upper bounds for the
matching degrees for groups of objects. Therefore, for GMCO, we introduce an
algorithm that uses these bounds to guide the search towards objects that are
more likely to belong to the answer set, avoid computing unnecessary matching
degrees.

For the GRCO problem, i.e., finding a (weak) order among objects, there has
been a plethora of works on the related topic of combining/fusing multiple ranked
lists, e.g., [33,29,7,62,32,57]. However, such methods are not suitable for our GCP
formulation. Instead, we take a different approach. We first relax the unanimity in
the second Pareto-based aggregation, and require only a percentage p% of users to
agree, resulting in the p-GMCO problem. This introduces a pre-order instead of a
partial order, i.e., the induced relation lacks antisymmetry (an object may at the
same time be before and after another). Then, building on this notion, we define
tiers based on p values, and rank objects according to the tier they belong, which
results in an objective weak order. To support the effectiveness of our ranking
scheme, we analyze its behaviour in the context of rank aggregation and show
that it posseses several desirable theoretical properties.

Contributions. The main contributions of this paper are summarized as follows.

− We introduce and propose an objective and fair interpretation of group cate-
gorical preference (GCP) recommender systems, based on double Pareto-based
aggregation.

− We introduce three problems in GCP systems, finding the group-maximal ob-
jects (GMCO), finding relaxed group-maximal objects (p-GMCO), and objec-
tively ranking objects (GRCO).

− We present a method for transforming the hierarchical domain of a categorical
attribute into a numerical domain.

− We propose index-based algorithms for all problems, which employ a space
partitioning index to hierarchically group objects.

6 Nikos Bikakis et al.

− We theoretically study the behaviour of our ranking scheme and present a
number of theoretical properties satisfied by our approach.

− We present several extensions involving the following issues: multi-values at-
tributes, non-tree hierarchies, subspace indexing, and objective attributes.

− We conduct a thorough experimental evaluation using both real and synthetic
data.

Outline. The remaining of this paper is organized as follows. Section 3 contains
the necessary definitions for the GCP formulation. Then, Section 4 discusses the
GMCO problem, Section 5 the p-GMCO problem, and Section 6 the GRCO prob-
lem. Section 7 discusses various extensions. Section 8 contains a detailed experi-
mental study. Section 2 reviews related work, while Section 9 concludes this paper.

2 Related Work

This section reviews work on recommender systems and algorithms for Pareto
aggregation.

2.1 Recommender Systems

There exist several techniques to specify preferences on objects [77,48]. The quan-

titative preferences, e.g., [3,37,46], assign a numeric score to attribute values, sig-
nifying importance. For example, values a, b, c are assigned scores 0.9, 0.7, 0.1,
respectively, which implies that a is more preferable than b, which in turn is more
preferable than c. There also exist qualitative preferences, e.g., [43,26], which are
relatively specified using binary relationships. For example, value a is preferred
over b and c, but b, c are indifferent. This work assumes the case of boolean quan-
titative preferences, where a single attribute value is preferred, while others are
indifferent.

The general goal of recommendation systems [1,17,84,41] is to identify those
objects that are most aligned to a user’s preferences. Typically, these systems pro-
vide a ranking of the objects by aggregating user preferences. Particularly, the work
in [3] defines generic functions that merge quantitative preferences. The works in
[23,37] deal with linear combinations of preference scores and propose index and
view based techniques for ranking tuples. For preferences in general, [43,26] intro-
duce a framework for composing or accumulating interests. Among the discussed
methods is the Pareto composition, which is related to the skyline computation,
discussed below.

Recently, several methods for group recommendations are proposed [40,57,20,
18]. These methods, recommend items to a group of users, trying to satisfy all
the group members. The existing methods are classified into two approaches. In
the first, the preferences of each group member are combined to create a virtual
user; the recommendations to the group are proposed w.r.t. to the virtual user.
In the second, individual recommendations for each member is computed; the
recommendations of all members are merged into a single recommendation. A
large number of group recommendation methods have been developed in several
domains such as: music [76,28,68,59,24,88], movies [64], TV programs [56,85,81,
10], restaurants [67,58], sightseeing tours [34,5,42], vacation packages [61,39], food

Finding Desirable Objects under Group Categorical Preferences ? 7

[30], news [69], and online communities [35,44,8]. Finally, several works study the
problem of rank aggregation in the context of group recommendations [71,9,14,
60,63].

Several methods to combine different ranked lists are presented in the IR lit-
erature. There the data fusion problem is defined. Given a set of ranked lists
of documents returned by different search engines, construct a single ranked list
combining the individual rankings [29]. Data fusion techniques can be classified
based on whether they require knowledge of the relevance scores [7]. The simplest
method based solely on the documents’ ranks is the Borda-fuse model. It assigns
as score to each document the summation of its rank in each list. The Condorcet-
fuse method [62] is based on a majoritarian voting algorithm, which specifies that
a document d1 is ranked higher in the fused list than another document d2 if d1 is
ranked higher than d2 more times than d2 is ranked higher than d1. The approach
in [32], assumes that a document is ranked better than another if the majority
of input rankings is in concordance with this fact and at the same time only a
few input rankings refute it. When the relevance scores are available, other fusion
techniques, including CombSUM, CombANZ and CombMNZ, can be applied [33].
In CombSUM, the fused relevance score of a document is the summation of the
scores assigned by each source. In CombANZ (resp. CombMNZ), the final score of
a document is calculated as that of CombSUM divided (resp. multiplied) by the
number of lists in which the document appears.

2.2 Algorithms for Pareto Aggregation

The work of [19] rekindled interest in the problem of finding the maximal ob-
jects [47] and re-introduces it as the skyline operator. An object is dominated if
there exists another object before it according to the partial order enforced by
the Pareto-based aggregation. The maximal objects are referred to as the skyline.
The authors propose several external memory algorithms. The most well-known
method is Block Nested Loops (BNL) [19], which checks each point for dominance
against the entire dataset.

The work in [27] observes that examining points according to a monotone (in all
attributes) preference function reduces the average number of dominance checks.
Based on this fact, the Sort-first Skyline algorithm (SFS) is introduces; including
some variations (i.e., LESS [36], and SaLSa [11]) belonging in the class of sort-
based skyline algorithms, that improve performance (see [16] for more details).

In [73] the multi-pass randomize algorithm RAND is proposed. Initially, RAND
selects a random sample; then, multiple passes over the dataset is performed in
order to prune points and find the skyline.

In other approaches, multidimensional indexes are used to guide the search for
skyline points and prune large parts of the space. The most well-known algorithms
is the Branch and Bound Skyline (BBS) method [66], which uses an R-tree, and
is shown to be I/O optimal with respect to this index. Similarly, the Nearest
Neighbor algorithm (NN) [45] also uses an R-tree performing multiple nearest
neighbor searches to identify skyline objects. A bitmap structure is used by Bitmap
[78] algorithm to encode the input data. In the Index [78] algorithm, several B-
trees are used to index the data, one per dimension. Other methods, e.g., [51,53],
employ a space-filling curve, such as the Z-order curve, and use a single-dimensional

8 Nikos Bikakis et al.

index. The Lattice Skyline (LS) algorithm [4] builds a specialized data structure
for low-cardinality domains.

In partitioning-based approaches, the algorithms divide the initial space into
several partitions. The first algorithm in this category, D&C [19] computes the
skyline objects adopting the divide-and-conquer paradigm. A similar approach
with stronger theoretical guarantees is presented in [75]. Recently, partitioning-
based skyline algorithms are proposed in [86,49]. OSP [86] attempts to reduce the
number of checks between incomparable points by recursively partition the skyline
points. BSkyTree [49] enhances [86] by considering both the notions of dominance
and incomparability while partitioning the space.

Finally, specific algorithms are proposed to efficiently compute the skyline over
partially ordered domains [21,82,72,87], metric spaces [25], non-metric spaces [65],
or anticorrelated distributions [74].

Several lines of research attempt to address the issue that the size of skyline
cannot be controlled, by introducing new concepts and/or ranking the skyline (see
[54] for a survey). [83] ranks tuples based on the number of records they dominate.
[22] deals with high-dimensional skylines, and relaxes the notion of dominance to
k-dominance, according to which a record is k-dominated if it is dominated in a
subspace of k dimensions. [55] uses a skyline-based partitioning to rank tuples.
The k most representative skyline operator is proposed in [52], which selects a set
of k skyline points, so that the number of points dominated by at least one of
them is maximized. In a similar spirit, [79] tries to select the k skyline points that
best capture the trade-offs among the parameters. Finally, [50] attempts to find
a small and focused skyline set. The size of the skyline is reduced by asking from
users to state additional preferences.

3 Group Categorical Preferences

Table 3 shows the most important symbols and their definition. Consider a set
of d categorical attributes A = {A1, . . . , Ad}. The domain of each attribute Ak
is a hierarchy H(Ak). A hierarchy H(Ak) defines a tree, where a leaf corresponds
to a lowest-level value, and an internal node corresponds to a category, i.e., a set,
comprising all values within the subtree rooted at this node. The root of a hierarchy
represents the category covering all lowest-level values. We use the symbol |Ak|
(resp. |H(Ak)|) to denote the number of leaf (resp. all hierarchy) nodes. With
reference to Figure 1, consider the “Cuisine” attribute. The node “Eastern” is a
category and is essentially a shorthand for the set {“Greek”, “Austrian”}, since it
contains the two leaves, “Greek” and “Austrian”.

Assume a set of objects O. An object oi ∈ O is defined over all attributes,
and the value of attribute oi.Ak is one of the nodes of the hierarchy H(Ak). For
instance, in Table 1, the value of the “Cuisine” attribute of object o1, is the node
“Eastern” in the hierarchy of Figure 1.

Further, assume a set of users U . A user ui ∈ U is defined over a subset of the
attributes, and for each specified attribute ui.Aj , its value in one of the hierarchy
H(Aj) nodes. For all unspecified attributes, we say that user ui is indifferent to
them. Note that, an object (resp. a user) may has (resp. specify) multiple values
for each attribute (see Section 7.1).

Finding Desirable Objects under Group Categorical Preferences ? 9

Table 3 Notation

Symbol Description

A, d Set of attributes, number of attributes (|A|)
Ak, |Ak| Attribute, number of distinct values in Ak

H(Ak), |H(Ak)| Hierarchy of Ak, number of hierarchy nodes
O, oi Set of objects, an object
U , uj Set of users, a user

oi.Ak, uj .Ak Value of attribute Ak in object oi, user uj
oi.Ik, uj .Ik Interval representation of the value of Ak in oi, uj

mji Matching vector of object oi to user uj
mji .Ak Matching degree of oi to user uj on attribute Ak
oa � ob Object oa is collectively preferred over ob
T The R∗-Tree that indexes the set of objects

Ni, ei R∗-Tree node, the entry for Ni in its parent node
ei.ptr, ei.mbr The pointer to node Ni, the MBR of Ni

Mj
i Maximum matching vector of entry ei to user uj

Mj
i .Ak Maximum matching degree of ei to user uj on Ak

Table 4 Matching vectors

User

Restaurant u1 u2 u3

o1 〈1/2, 1/2, 1/6, 1, 1〉 〈0, 1, 1, 1, 0〉 〈0, 1, 0, 1, 1〉
o2 〈1/4, 0, 0, 0, 0〉 〈1, 1, 1, 1, 1〉 〈1/2, 1, 1, 1, 1〉
o3 〈0, 1/2, 0, 0, 0〉 〈0, 1, 1, 1, 0〉 〈0, 1, 0, 1, 1〉
o4 〈0, 0, 0, 0, 0〉 〈0, 1, 1, 1, 0〉 〈0, 1, 0, 1, 1〉

Given an object oi, a user uj , and a specified attribute Ak, the matching degree

of oi to uj with respect to Ak, denoted as mj
i .Ak, is specified by a matching func-

tion M : dom(Ak) × dom(Ak) → [0, 1]. The matching function defines the relation

between the user’s preferences and the objects attribute values. For an indifferent
attribute Ak of a user uj , we define mj

i .Ak = 1.

Note that, different matching functions can be defined per attribute and user;
for ease of presentation, we assume a single matching function. Moreover, note
that this function can be any user defined function operating on the cardinalities
of intersections and unions of hierarchy attributes. For example, it can be the

Jaccard coefficient, i.e., mj
i .Ak =

|oi.Ak∩uj .Ak|
|oi.Ak∪uj .Ak| . The numerator counts the number

of leaves in the intersection, while the denominator counts the number of leaves
in the union, of the categories oi.Ak and uj .Ak. Other popular choices are the

Overlap coefficient:
|oi.Ak∩uj .Ak|

min (|oi.Ak|,|uj .Ak|) , and the Dice coefficient: 2
|oi.Ak∩uj .Ak|
|oi.Ak|+|uj .Ak| .

In our running example, we assume the Jaccard coefficient. Hence, the match-

ing degree of restaurant o1 to user u1 w.r.t. “Attire” is |“Business casual”∩“Casual”|
|“Business casual”∪“Casual”| =

|{“Business casual”}|
|{“Business casual”,“Smart casual”| = 1

2 , where we substituted “Casual” with the set

{“Business casual”, “Smart casual”}.
Given an object oi and a user uj , the matching vector of oi to uj , denoted as mj

i ,

is a d-dimensional point in [0, 1]d, where its k-th coordinate is the matching degree
with respect to attribute Ak. Furthermore, we define the norm of the matching
vector to be ‖mj

i‖ =
∑
Ak∈Am

j
i .Ak. In our example, the matching vector of restau-

10 Nikos Bikakis et al.

rant o1 to user u1 is 〈1/2, 1/2, 1/6, 1, 1〉. All matching vectors of this example are
shown in Table 4.

4 The Group-Maximal Categorical Objects (GMCO) Problem

Section 4.1 introduces the GMCO problem, and Section 4.2 describes a straightfor-
ward baseline approach. Then, Section 4.3 explains a method to convert categorical
values into intervals, and Section 4.4 introduces our proposed index-based solution.

4.1 Problem Definition

We first consider a particular user uj and examine the matching vectors. The
first Pareto-based aggregation across the attributes of the matching vectors, induces
the following partial and strict partial “preferred” orders on objects. An object
oa is preferred over ob, for user uj , denoted as oa �j ob iff for every specified

attribute Ak of the user it holds that mj
a.Ak ≥ mj

b.Ak. Moreover, object oa is

strictly preferred over ob, for user uj , denoted as oa �j ob iff oa is preferred over ob
and additionally there exists a specified attribute Ak such that mj

a.Ak > mj
b.Ak.

Returning to our example, consider user u1 and its matching vector 〈0, 1/2, 0, 0, 0〉
for o3, and 〈0, 0, 0, 0, 0〉 for o4. Observe that o3 is strictly preferred over o4.

We now consider all users in U . The second Pareto-based aggregation across users,
induces the following strict partial “collectively preferred” order on objects. An
object oa is collectively preferred over ob, if oa is preferred over ob for all users,
and there exists a user uj for which oa is strictly preferred over ob. From Table 4,
it is easy to see that restaurant o1 is collectively preferred over o3, because o1 is
preferred by all three users, and strictly preferred by user u1.

Given the two Pareto-based aggregations, we define the collectively maximal

objects in O with respect to users U , as the set of objects for which there exists
no other object that is collectively preferred over them. In our running example,
o1 and o2 objects are both collectively preferred over o3 and o4. There exists no
object which is collectively preferred over o1 and o2, and thus are the collectively
maximal objects. We next formally define the GMCO problem.

Problem 1. [GMCO] Given a set of objects O and a set of users U defined over
a set of categorical attributes A, the Group-Maximal Categorical Objects (GMCO)
problem is to find the collectively maximal objects of O with respect to U .

4.2 A Baseline Algorithm (BSL)

The GMCO problem can be transformed to a maximal elements problem, or a
skyline query, where the input elements are the matching vectors. Note, however,
that the GMCO problem is different than computing the conventional skyline, i.e.,
over the object’s attribute values.

The Baseline (BSL) method, whose pseudocode is depicted in Algorithm 1,
takes advantage of this observation. The basic idea of BSL is for each object oi
(loop in line 1) and for all users (loop in line 2), to compute the matching vectors
mj
i (line 3). Subsequently, BSL constructs a |U|-dimensional tuple ri (line 4), so

that its j-th entry is a composite value equal to the matching vector mj
i of object

Finding Desirable Objects under Group Categorical Preferences ? 11

Algorithm 1: BSL

Input: objects O, users U
Output: CM the collectively maximal
Variables: R set of intermediate records

1 foreach oi ∈ O do
2 foreach uj ∈ U do

3 compute mji
4 ri[j]← mji

5 insert ri into R
6 CM ← SkylineAlgo (R)

oi to user uj . When all users are examined, tuple ri is inserted in the set R (line

5).

The next step is to find the maximal elements, i.e., compute the skyline over the
records in R. It is easy to prove that tuple ri is in the skyline of R iff object oi is a
collectively maximally preferred object of O w.r.t. U . Notice, however, that due to
the two Pareto-based aggregations, each attribute of a record ri ∈ R is also a record
that corresponds to a matching vector, and thus is partially ordered according to
the preferred orders defined in Section 3. Therefore, in order to compute the skyline
of R, we need to apply a skyline algorithm (line 6), such as [19,66,36].

Computational Complexity. The computational cost of BSL is the sum of two
parts. The first is computing the matching degrees, which takes O(|O| · |U|) time.
The second is computing the skyline, which requires O(|O|2 · |U| · d) comparisons,
assuming a quadratic time skyline algorithms is used. Therefore, BSL takes O(|O|2 ·
|U| · d) time.

4.3 Hierarchy Transformation

This section presents a simple method to transform the hierarchical domain of
a categorical attribute into a numerical domain. The rationale is that numerical
domains can be ordered, and thus tuples can be stored in multidimensional in-
dex structures. The index-based algorithm of Section 4.4 takes advantage of this
transformation.

Consider an attribute A and its hierarchy H(A), which forms a tree. We assume
that any internal node has at least two children; if a node has only one child, then
this node and its child are treated as a single node. Furthermore, we assume that
there exists an ordering, e.g., the lexicographic, among the children of any node
that totally orders all leaf nodes.

The hierarchy transformation assigns an interval to each node, similar to label-
ing schemes such as [2]. The i-th leaf of the hierarchy (according to the ordering)
is assigned the interval [i − 1, i). Then, each internal node is assigned the small-
est interval that covers the intervals of its children. Figure 1 depicts the assigned
intervals for all nodes in the two car hierarchies.

Following this transformation, the value on the Ak attribute of an object oi
becomes an interval oi.Ik = [oi.I

−
k , oi.I

+
k). The same holds for a user uj . There-

12 Nikos Bikakis et al.

A
tt

ir
e

Cuisine

o1

o2

o3

o4

eaeb

ec

u1

u1

u2

u3

Fig. 2 Transformed objects and users

fore, the transformation translates the hierarchy H(Ak) into the numerical domain
[0, |Ak|].

An important property of the transformation is that it becomes easy to com-
pute matching degrees for metrics that are functions on the cardinalities of inter-
sections or unions of hierarchy attributes. This is due to the following properties,
which use the following notation: for a closed-open interval I = [α, β), define
‖I‖ = β − α.

Proposition 1. For objects/users x, y, and an attribute Ak, let x.Ik, y.Ik denote
the intervals associated with the value of x, y on Ak. Then the following hold:

(1) |x.Ak| = ‖x.Ik‖
(2) |x.Ak ∩ y.Ak| = ‖x.Ik ∩ y.Ik‖
(3) |x.Ak ∪ y.Ak| = ‖x.Ik‖+ ‖y.Ik‖ − ‖x.Ik ∩ y.Ik‖

Proof. For a leaf value x.Ak, it holds that |x.Ak| = 1. By construction of the
transformation, ‖x.Ik‖ = 1. For a non-leaf value x.Ak, |x.Ak| is equal to the
number of leaves under x.Ak. Again, by construction of the transformation,
‖x.Ik‖ is equal to the smallest interval that covers the intervals of the leaves
under x.Ak, and hence equal to |x.Ak|. Therefore for any hierarchy value, it
holds that x.Ak = ‖x.Ik‖.

Then, the last two properties trivially follow. The third holds since
|x.Ak ∪ y.Ak| = |x.Ak|+ |y.Ak| − |x.Ak ∩ y.Ak|. �

4.4 An Index-based Algorithm (IND)

This section introduces the Index-based GMCO (IND) algorithm. The key ideas of
IND are: (1) apply the hierarchy transformation, previously described, and index
the resulting intervals, and (2) define upper bounds for the matching degrees of a
group of objects, so as to guide the search and quickly prune unpromising objects.

We assume that the set of objects O and the set of users U are transformed so
that each attribute Ak value is an interval Ik. Therefore, each object (and user)
defines a (hyper-)rectangle on the d-dimensional cartesian product of the numerical
domains, i.e., [0, |A1|)× · · · × [0, |Ad|).

Figure 2 depicts the transformation of the objects and users shown in Ta-
bles 1 & 2, considering only the attributes Cuisine and Attire. For instance, object

Finding Desirable Objects under Group Categorical Preferences ? 13

o1 is represented as the rectangle [4, 6) × [2, 3) in the “Cuisine”×“Attire” plane.
Similarly, user u1 is represented as two intervals, [2, 6), [1, 3), on the transformed
“Cuisine”, “Attire” axes, respectively.

The IND algorithm indexes the set of objects in this d-dimensional space. In
particular, IND employs an R∗-Tree T [12], which is well suited to index rectangles.
Each T node corresponds to a disk page, and contains a number of entries. Each
entry ei comprises (1) a pointer ei.ptr, and (2) a Minimum Bounding Rectangle
(MBR) ei.mbr. A leaf entry ei corresponds to an object oi, its pointer oi.ptr is
null, and ei.mbr is the rectangle defined by the intervals of oi. A non-leaf entry ei
corresponds to a child node Ni, its pointer ei.ptr contains the address of Ni, and
ei.mbr is the MBR of (i.e., the tightest rectangle that encloses) the MBRs of the
entries in Ni.

Due to its enclosing property, the MBR of an entry ei encloses all objects that
are stored at the leaf nodes within the T subtree rooted at node Ni. It is often
helpful to associate an entry ei with all the objects it encloses, and thus treat ei
as a group of objects.

Consider a T entry ei and a user uj ∈ U . Given only the information within
entry ei, i.e., its MBR, and not the contents, i.e., its enclosing objects, at the
subtree rooted at Ni, it is impossible to compute the matching vectors for the
objects within this subtree. However, it is possible to derive an upper bound for the
matching degrees of any of these objects.

We define the maximum matching degree Mj
i .Ak of entry ei on user uj w.r.t.

specified attribute Ak as the highest attainable matching degree of any object that
may reside within ei.mbr. To do this we first need a way to compute lower and
upper bounds on unions and intersections of a user interval with an MBR.

Proposition 2. Fix an attribute Ak. Consider an object/user x, and let Ix,
denote the interval associated with its value on Ak. Also, consider another ob-
ject/user y whose interval Iy on Ak is contained within a range Ry. Given an
interval I, δ(I) returns 0 if I is empty, and 1 otherwise. Then the following hold:

(1) 1 ≤ |y.Ak| ≤ ‖Ry‖
(2) δ(Ix ∩Ry) ≤ |x.Ak ∩ y.Ak| ≤ ‖Ix ∩Ry‖
(3) ‖Ix‖+ 1− δ(Ix ∩Ry) ≤ |x.Ak ∪ y.Ak| ≤ ‖Ix‖+ ‖Ry‖ − δ(Ix ∩Ry)

Proof. Note that for the object/user y with interval Iy on Ak, it holds that
Iy ⊆ Ry.

(1) For the left inequality of the first property, observe that value y.Ak is a
node that contains at least one leaf, hence 1 ≤ |y.Ak|. Furthermore, for the right
inequality, |y.Ak| = ‖Iy‖ ≤ ‖Ry‖.

(2) For the left inequality of the second property, observe that the value
x.Ak ∩ y.Ak contains either at least one leaf when the intersection is not empty,
and no leaf otherwise. The right inequality follows from the fact that
Ix ∩ Iy ⊆ Ix ∩Ry.

(3) For the left inequality of the third property, assume first that Ix∩Iy = ∅;
hence δ(Ix ∩Ry) = 0. In this case, it holds that ‖Ix ∪ Iy‖ = ‖Ix‖+ ‖Iy‖. By the
first property, we obtain 1 ≤ ‖Iy‖. Combining the three relations, we obtain the
left inequality. Now, assume that Ix∩ Iy 6= ∅; hence δ(Ix∩Ry) = 1. In this case,
it also holds that ‖Ix‖ ≤ ‖Ix ∪ Iy‖, and the left inequality follows.

14 Nikos Bikakis et al.

For the right inequality of the third property, observe that
‖Ix ∪ Iy‖ = ‖Ix‖+ ‖Iy‖ − ‖Ix ∩ Iy‖. By the first property, we obtain
‖Iy‖ ≤ ‖Ry‖, and −‖Ix ∩ Iy‖ ≤ −δ(Ix ∩Ry), by the second. The right inequality
follows from combining these three relations. �

Then, defining the maximum matching degree reduces to appropriately select-
ing the lower/upper bounds for the specific matching function used. For example,

consider the case of the Jaccard coefficient,
|oi.Ak∩uj .Ak|
|oi.Ak∪uj .Ak| . Assume ei is a non-leaf

entry, and let ei.Rk denote the range of the MBR on the Ak attribute. We also as-

sume that uj .Ik and ei.Rk overlap. Then, we define Mj
i .Ak =

‖ei.Rk∩uj .Ik‖
‖uj .Ik‖ , where

we have used the upper bound for the intersection in the enumerator and the
lower bound for the union in the denominator, according to Proposition 2. For an
indifferent to the user attribute Ak, we define Mj

i .Ak = 1. Now, assume that ei is
a leaf entry, that corresponds to object oi. Then the maximum matching degree
Mj
i .Ak is equal to the matching degree mj

i .Ak of oi to uj w.r.t. Ak.
Computing maximum matching degrees for other metrics is straightforward. In

any case, the next lemma shows that an appropriately defined maximum matching
degree is an upper bound to the matching degrees of all objects enclosed in entry
ei.

Proposition 3. The maximum matching degree Mj
i .Ak of entry ei on user uj

w.r.t. specified attribute Ak is an upper bound to the highest matching degree
in the group that ei defines.

Proof. The maximum matching degree is an upper bound from Proposition 2.
�

In analogy to the matching vector, the maximum matching vector Mj
i of entry

ei on user uj is defined as a d-dimensional vector whose k-th coordinate is the

maximum matching degree Mj
i .Ak. Moreover, the norm of the maximum matching

vector is ‖Mj
i ‖ =

∑
Ak∈AM

j
i .Ak.

Next, consider a T entry ei and the entire set of users U . We define the score of
an entry ei as score(ei) =

∑
uj∈U ‖M

j
i ‖. This score quantifies how well the enclosed

objects of ei match against all users’ preferences. Clearly, the higher the score, the
more likely that ei contains objects that are good matches to users.

Algorithm Description. Algorithm 2 presents the pseudocode for IND. The al-
gorithm maintains two data structures: a heap H which stores T entries sorted
by their score, and a list CM of collectively maximal objects discovered so far.
Initially the list CM is empty (line 1), and the root node of the R∗-Tree is read
(line 2). The score of each root entry is computed and all entries are inserted in H

(line 3). Then, the following process (loop in line 4) is repeated as long as H has
entries.

The H entry with the highest score, say ex, is popped (line 5). If ex is a non-leaf
entry (line 6), it is expanded, which means that the node Nx identified by ex.ptr

is read (line 7). For each child entry ei of Nx (line 8), its maximum matching
degree Mj

i with respect to every user uj ∈ U is computed (lines 10–11). Then,
the list CM is scanned (loop in line 12). If there exists an object oa in CM such
that (1) for each user uj , the matching vector mj

a of oa is better than Mj
i , and

(2) there exists a user uk so that the matching vector mk
a of oa is strictly better

Finding Desirable Objects under Group Categorical Preferences ? 15

Algorithm 2: IND

Input: R∗-Tree T , users U
Output: CM the collectively maximal
Variables: H a heap with T entries sorted by score()

1 CM ← ∅
2 read T root node
3 insert in H the root entries
4 while H is not empty do
5 ex ← pop H
6 if ex is non-leaf then
7 Nx ← read node ex.ptr
8 foreach ei ∈ Nx do
9 pruned← false

10 foreach uj ∈ U do

11 compute Mj
i

12 foreach oa ∈ CM do

13 if ∀Aj : mja�Mj
i ∧ ∃Ak : mka�Mk

i then
14 pruned← true
15 break

16 if not pruned then
17 insert ei in H

18 else
19 ox ← ex
20 result← true
21 foreach oa ∈ CM do
22 if oa � ox then
23 result← false
24 break

25 if result then
26 insert ox in CM

than Mk
i , then entry ei is discarded (lines 13–15). It is straightforward to see (from

Proposition 3) that if this condition holds, ei cannot contain any object that is
in the collectively maximal objects, which guarantees IND’ correctness. When the
condition described does not hold (line 16), the score of ei is computed and ei is
inserted in H (line 17).

Now, consider the case that ex is a leaf entry (line 18), corresponding to object
ox (line 19). The list CM is scanned (loop in line 21). If there exists an object that
is collectively preferred over ox (line 22), it is discarded. Otherwise (line 25–26),
ox is inserted in CM .

The algorithm terminates when H is empty (loop in line 4), at which time the
list CM contains the collectively maximal objects.

Computational Analysis. IND performs object to object comparisons as well as
object to non-leaf entries. Since there are at most |O| non-leaf entries, IND per-
forms O(|O|2 · |U| ·d) comparisons in the worst case. Further it computes matching
degrees on the fly at a cost of O(|O| · |U|). Overall, IND takes O(|O|2 · |U| · d) time,
the same as BSL. However, in practice IND is more than an order of magnitude
faster than BSL (see Section 8).

16 Nikos Bikakis et al.

Example. We demonstrate IND, using our running example, as depicted in Fig-
ure 2. The four objects are indexed by an R∗-Tree, whose nodes are drawn as
dashed rectangles. Objects o1, o2 are grouped in entry eb, while o3, o4 in entry ec.
Entries eb and ec are the entries of the root ea. Initially, the heap contains the two
root entries, H = {eb, ec}. Entry eb has the highest score (the norm of its maximum
matching vector is the largest), and is thus popped. The two child entries o1 and
o2 are obtained. Since the list CM is empty, no child entry is pruned and both are
inserted in the heap, which becomes H = {o1, o2, ec}. In the next iteration, o2 has
the highest score and is popped. Since this is a leaf entry, i.e., an object, and CM

is empty, o2 is inserted in the result list, CM = {o2}. Subsequently, o1 is popped
and since o2 is not collectively preferred over it, o1 is also placed in the result list,
CM = {o2, o1}. In the final iteration, entry ec is popped, but the objects in CM

are collectively preferred over both ec child. Algorithm IND concludes, finding the
collectively maximal CM = {o2, o1}.

5 The p-Group-Maximal Categorical Objects (p-GMCO) Problem

Section 5.1 introduces the p-GMCO problem, and Section 5.2 presents an adapta-
tion of the BSL method, while Section 5.3 introduces an index-based approach.

5.1 Problem Definition

As the number of users increases, it becomes more likely that the users express
very different and conflicting preferences. Hence, it becomes difficult to find a pair
of objects such that the users unanimously agree that one is worst than the other.
Ultimately, the number of maximally preferred objects increases. This means that
the answer to an GMCO problem with a large set of users becomes less meaningful.

The root cause of this problem is that we require unanimity in deciding whether
an object is collectively preferred by the set of users. The following definition
relaxes this requirement. An object oa is p-collectively preferred over ob, denoted
as oa �p ob, iff there exist a subset Up ⊆ U of at least d p

100 · |U|e users such that
for each user ui ∈ Up oa is preferred over ob, and there exists a user uj ∈ Up for
which oa is strictly preferred over ob. In other words, we require only p% of the
users votes to decide whether an object is universally preferred. Similarly, the p-

collectively maximal objects of O with respect to users U , is defined as the set of
objects in O for which there exists no other object that is p-collectively preferred
over them. The above definitions give rise to the p-GMCO problem.

Problem 2. [p-GMCO] Given a set of objects O and a set of users U defined
over a set of categorical attributes A, the p-Group-Maximal Categorical Objects (p-
GMCO) problem is to find the p-collectively maximal objects of O with respect
to U .

Following the definitions, we can make a number of important observations,
similar to those in the k-dominance notion [22]. First, if an object is collectively
preferred over some other object, it is also p-collectively preferred over that same
object for any p. As a result, an object that is p-collectively maximal is also

Finding Desirable Objects under Group Categorical Preferences ? 17

collectively maximal for any p. In other words, the answer to the p-GMCO problem
is a subset of the answer to the corresponding GMCO.

Second, consider an object o that is not p-collectively maximal. Note that it
is possible that no p-collectively maximal object is p-collectively preferred over o.
As a result checking if o is a result by considering only the p-collectively maximal
objects may lead to false positives. Fortunately, it holds that there must exist a
collectively maximal object that is p-collectively preferred over o. So it suffices to
check o against the collectively maximal objects only (and not just the subset that
is p-collectively maximal).

Example. Consider the example in Tables 1 & 2. If we consider p = 100, we require
all users to agree if an object is collectively preferred. So, the 100-collectively
maximal objects are the same as the collectively maximal objects (i.e., o1, o2).
Let’s assume that p = 60; i.e., d 60

100 · 3e = 2 users. In this case, only the restaurant
o2 is 60-collectively maximal, since, o2 is 60-collectively preferred over o1, if we
consider the set of users u2 and u3. Finally, if p = 30, we consider only one user in
order to decide if an object is collectively preferred. In this case, the 30-collectively
maximal is an empty set, since o2 is 30-collectively preferred over o1, if we consider
either user u2 or u3, and also o1 is 30-collectively preferred over o2, if we consider
user u1.

Algorithm 3: p-BSL

Input: objects O, users U
Output: p-CM the p-collectively maximal
Variables: CM the collectively maximal

...
7 foreach oi ∈ CM do
8 inpCM ← true
9 foreach oj ∈ CM\oi do

10 if oj �p oi then
11 inpCM ← false
12 break;

13 if inpCM then
14 insert oi to p-CM

5.2 A Baseline Algorithm (p-BSL)

Based on the above observations, we describe a baseline algorithm for the p-GMCO
problem, based on BSL. Algorithm 3 shows the changes with respect to the BSL
algorithm; all omitted lines are identical to those in Algorithm 1. The p-BSL
algorithm first computes the collectively maximal objects applying BSL (lines 1–

6). Then, each collectively maximal object, is compared with all other collectively
maximal objects (lines 7–14). Particularly, each object oi is checked whether there
exists another object in CM that is p-collectively preferred over oi (lines 10–12). If

18 Nikos Bikakis et al.

there is no such object, object oi is inserted in p-CM (line 14). When the algorithm
terminates, the set p-CM contains the p-collectively maximal objects.

Computational Analysis. Initially, the algorithm is computing the collectively
maximal set using the BSL algorithm (lines 1–6), which requires O(|O|2 · |U| · d).
Then, finds the p-collectively maximal objects (lines 7–14), performing in the worst
case O(|O|2) comparisons. Since, in worst case we have that |CM | = |O|. Therefore,
the computational cost of Algorithm 3 is O(|O|2 · |U| · d).

5.3 An Index-based Algorithm (p-IND)

We also propose an extension of IND for the p-GMCO problem, termed p-IND.
Algorithm 4 shows the changes with respect to the IND algorithm; all omitted
lines are identical to those in Algorithm 2.

Algorithm 4: p-IND

Input: R∗-Tree T , users U
Output: p-CM the p-collectively maximal
Variables: H a heap with T entries sorted by score(), CM the collectively maximal

object

1 CM ← ∅; p-CM ← ∅
...

4 while H is not empty do
...

18 else
19 ox ← ex
20 inCM ← true; inpCM ← true
21 foreach oa ∈ CM do
22 if oa � ox then
23 inCM ← false
24 break

25 if inpCM then
26 if oa �p ox then
27 inpCM ← false

28 if oa ∈ p-CM then
29 if ox �p oa then
30 remove oa from p-CM

31 if inCM then
32 insert ox to CM
33 if inpCM then
34 insert ox to p-CM

In addition to the set CM , p-IND maintains the set p-CM of p-collectively
maximal objects discovered so far (line 1). It holds that p-CM ⊆ CM ; therefore,
an object may appear in both sets. When a leaf entry ox is popped (line 19), it
is compared against each object oa in CM (lines 21–30) in three checks. First,
the algorithm checks if oa is collectively preferred over ox (lines 22–24). In that

Finding Desirable Objects under Group Categorical Preferences ? 19

case, object ox is not in the CM and thus not in the p-CM . Second, it checks if
oa is p-collectively preferred over ox (lines 25–27). In that case, object ox is not
in the p-CM , but is in the CM . Third, the algorithm checks if the object ox is
p-collectively preferred over oa (lines 28–30). In that case, object oa is removed
from the p-collectively maximal objects (line 30), but remains in CM .

After the three checks, if ox is collectively maximal (line 31) it is inserted in
CM (line 32). Further, if ox is p-collectively maximal (line 33) it is also inserted
in p-CM (line 34). When the p-IND algorithm terminates, the set p-CM contains
the answer to the p-GMCO problem.

Computational Analysis. p-IND performs at most 3 times more object to object
comparisons than IND. Hence its running time complexity remains O(|O|2 · |U| ·d).

6 The Group-Ranking Categorical Objects (GRCO) Problem

Section 6.1 introduces the GRCO problem, and Section 6.2 describes an algorithm
for GRCO. Then, Section 6.3 discusses some theoretical properties of our proposed
ranking scheme.

6.1 Problem Definition

As discussed in Section 1, it is possible to define a ranking among objects by “com-
posing” the degrees of match for all users. However, any “compositing” ranking
function is unfair, as there is no objective way to aggregate individual degrees of
match. In contrast, we propose an objective ranking method based on the concept
of p-collectively preference. The obtained ranking is a weak order, meaning that
it is possible for objects to share the same rank (ranking with ties). We define the
rank of an object o to be the smallest integer τ , where 1 ≤ τ ≤ |U|, such that o is
p-collectively maximal for any p ≥ τ

|U| · 100. The non-collectively maximal objects

are assigned the lowest possible rank |U| + 1. Intuitively, rank τ for an object o
means that any group U ′ ⊆ U of at least τ users (i.e., |U ′| ≥ τ) would consider o
to be preferable, i.e., o would be collectively maximal for these U ′ users. At the
highest rank 1, an object o is preferred by each user individually, meaning that o
appears in all possible p-collectively maximal object sets.

Problem 3. [GRCO] Given a set of objects O and a set of users U defined over
a set of categorical attributes A, the Group-Ranking Categorical Objects (GRCO)
problem is to find the rank of all collectively maximal objects of O with respect
to U .

Example. Consider the restaurants and the users presented in Tables 1 & 2. In
our example, the collectively maximals are the restaurants o1 and o2. As described
in the previous example (Section 5), the restaurant o2 is collectively maximal for
any group of two users. Hence, the rank for the restaurant o2 is equal to two. In
addition, o1 requires all the three users in order to be considered as collectively
maximal; so its rank is equal to three. Therefore, the restaurant o2 is ranked higher
than o1.

20 Nikos Bikakis et al.

6.2 A Ranking Algorithm (RANK-CM)

The RANK-CM algorithm (Algorithm 5), computes the rank for all collectively
maximal objects. The algorithm takes as input, the collectively maximal objects
CM , as well as the number of users |U|. Initially, in each object is assigned the
highest rank; i.e., rank(oi) ← 1 (line 2). Then, each object is compared against
all other objects in CM (loop in line 3). Throughout the objects comparisons, we
increase τ (lines 5–11) from the current rank (i.e., rank(ox)) (line 4) up to |U|. If
oi is not p-collectively maximal (line 7), for p = τ

|U| · 100 (line 6), then ox cannot

be in the p-CM and can only have rank at most τ +1 (line 8). Finally, each object
is inserted in the rCM based on its rank (line 12).

Computational Analysis. The algorithm compares each collective maximal ob-
ject with all other collective maximal objects. Between two objects the algorithm
performs at most |U|−1 comparisons. Since, in worst case we have that |CM | = |O|,
the computational cost of Algorithm 5 is O(|O|2 · |U|).

Algorithm 5: RANK-CM

Input: CM the collectively maximal objects, |U| the number of users
Output: rCM the ranked collectively maximal objects

1 foreach oi ∈ CM do
2 rank(oi)← 1
3 foreach oj ∈ CM\oi do
4 τ ← rank(oi)
5 while τ ≤ |U| − 1 do
6 p← τ

|U| · 100

7 if oj �p oi then
8 rank(oi) = τ + 1
9 else

10 break;

11 τ ← τ + 1

12 insert oi in rCM at rank(oi)

6.3 Ranking Properties

In this section, we discuss some theoretical properties in the context of the rank
aggregation problem. These properties have been widely used in voting theory as
evaluation criteria for the fairness of a voting system [80,6,70]. We show that the
proposed ranking scheme satisfies several of these properties.

Property 1. [Majority] If an object is strictly preferable over all other objects
by the majority of the users, then this object is ranked above all other objects.

Proof. Assume that ka users strictly prefer oa over all other objects, where

ka >
|U|
2 . We will prove that the rank ra of the object oa is lower than the rank

of any other object.
Since, ka users strictly prefer oa over all other objects, any group of at least

|U|−ka+ 1 users, will consider oa as collectively maximal. This holds since, any

Finding Desirable Objects under Group Categorical Preferences ? 21

group of at least |U| − ka + 1 users, contains at least one user which strictly
prefers oa over all other objects. Note that, |U|− ka+ 1 may not be the smallest
group size. That is, it may hold that, for any group of less than |U| − ka + 1
users, oa is collectively maximal.

Recall the definition of the ranking scheme, if the rank of an object o is τ ,
then τ is the smallest integer that, for any group of at least τ users, o will be
collectively maximal (for this group). Therefore, in any case we have that, the
rank ra of oa is at most |U| − ka + 1, i.e., ra ≤ |U| − ka + 1 (1).

On the other hand, let an object oi ∈ O\oa. Then, oi is not collectively
maximal, for any group with |U| − ka + 1 users. This holds since, we have that

ka >
|U|
2 . So, there is a group of |U| − ka + 1 users, for which, each user strictly

preferred oa over oi. As a result, in order for oi to be considered as collectively
maximal for any group of a specific size, we have to consider groups with more
than |U| − ka + 1 users. From the above, it is apparent that, in any case, the
rank ri for an object oi is greater than |U| − ka + 1, i.e., ri > |U| − ka + 1 (2).

Therefore, from (1) and (2), in any case the rank of the object oa will be lower
than the rank of any other object. This concludes the proof of the property. �

Property 2. [Independence of Irrelevant Alternatives] The rank of each
object is not affected if non-collectively maximal objects are inserted or removed.

Proof. According to the definition of the ranking scheme, if the rank of an
object o is τ , then τ is the smallest integer that, for any group of at least τ
users, o will be collectively maximal (for this group).

As a result, the rank of an object is specified from the minimum group
size, for which, for any group of that size, the object is collectively maximal.
Therefore, it is apparent that, the rank of each object is not affected by the
non-collectively maximal objects. To note that, the non-collectively maximal
objects are ranked with the lowest possible rank, i.e., |U|+ 1. �

Property 3. [Independence of Clones Alternatives] The rank of each object
is not affected if non-collectively maximal objects similar to an existing object
are inserted.

Proof. Similarly to the Property 2. Based on the ranking scheme definition,
the non-collectively maximal objects do not affect the ranking. �

Property 4. [Users Equality] The result will remain the same if two users
switch their preferences. This property is also know as Anonymity.

Proof. According to the definition of the ranking scheme, if the rank of an
object o is τ , then τ is the smallest integer that, for any group of at least τ
users, o will be collectively maximal (for this group).

As a result, the rank of an object is specified from the minimum group size,
for which, for any group of that size, the object is collectively maximal. Hence,
if two users switch preferences, it is apparent that, the minimum group of any
users, for which an object is collectively maximal, remains the same, for all
objects. Therefore, the rank of all objects remains the same. �

22 Nikos Bikakis et al.

Let an object oi ∈ O and a user uj ∈ U . Also, let mj
i be the matching vector

between uj and oi. We say that the user uj increases his interest over oi, if ∃Ak :

mj
i .Ak < m̀j

i .Ak, where m̀j
i is the matching degree resulted by the interest change.

Property 5. [Monotonicity] If an object oa is ranked above an object ob, and
a user increases his interest over oa, then oa maintains its position above ob.

Proof. Let ra and rb be the rank of objects oa and ob, respectively. Since, oa is
ranked above the object ob, we have that ra < rb.

According to the definition of the ranking scheme, if the rank of an object o
is τ , then τ is the smallest integer that, for any group of at least τ users, o will
be collectively maximal (for this group). So, we have that for any group of at
least ra and rb members, oa and ob will be collectively maximal.

Assume a user uj ∈ U increases his interest over the object oa. Further,
assume that r′a and r′b are the new ranks of the objects oa and ob, resulting from
the interest change. We show that in any case r′a ≤ ra and r′b ≥ rb.

First let us study what holds for the new rank of the object oa. After the
interest change, r′a is the smallest group size that oa is collectively maximal
for any group of that size. We suppose for the sake of contradiction that r′a >
ra. Hence, after the interest change, we should consider larger group sizes in
order to ensure that oa will be collectively maximal for any group of that size.
This means that, after the interest change, there is a group of ra users for
which oa is not collectively maximal. Hence, since oa is not collectively maximal,
there must exist an object oi ∈ O\oa that is collectively preferred over oa. To
sum up, considering ra users, we have that: before the interest change, there is
no object that is collectively preferred over oa; and, after the interest change,
there is an object that is collectively preferred over oa. This cannot hold, since
the matching degrees between all other users and objects remain the same,
while some matching degrees between oa and uj have increased (due to interest
change). So, for any group of ra users, there cannot exist an object oi which
is collectively preferred over oa. Hence, we proved by contradiction that in any
case r′a ≤ ra.

Now, let us study what holds for the new rank of the object ob. After the
interest change, r′b is the smallest group size, that, for any group of that size, ob
is collectively maximal. For the sake of contradiction, we assume that r′b < rb.
Hence, after the interest change, we should consider smaller group sizes, in order
to ensure that ob will be collectively maximal for any group of that size. This
means that, before the interest change, there is a group of r′b users, for which
ob is not collectively maximal. Hence, since ob is not collectively maximal, there
must be an object oi ∈ O\ob that is collectively preferred over ob. To sum up,
considering r′b users, we have that: before the interest change, there is an object
that is collectively preferred over ob; and, after the interest change, there is no
object that is collectively preferred over ob. It is apparent that this also cannot
hold. So, we proved by contradiction, that in any case r′b ≥ rb.

We show that, r′a ≤ ra and r′b ≥ rb. Since, ra < rb, in any case the object oa
will be ranked above ob. This concludes the proof. �

Finding Desirable Objects under Group Categorical Preferences ? 23

For some user u, the following property ensures that the result when u partic-
ipates is the same or better (w.r.t. u’s preferences) compared to that when u does
not participate.

Property 6. [Participation] Version 1: If the object oa is ranked above the
object ob, then after adding one or more users, which strictly prefer oa over all
other objects, object oa maintains its position above ob.

Version 2: Assume an object oa that is ranked above the object ob, and that
there is at least one user u ∈ U which has not stated any preferences; then if u
expresses that strictly prefers oa over all other objects, object oa maintains its
position above ob.

Proof. Version 1: Let ra and rb be the ranks of the objects oa and ob, respec-
tively. Since, oa is ranked above the object ob, we have that ra < rb.

According to the definition of the ranking scheme, if the rank of an object o
is τ , then τ is the smallest integer that, for any group of at least τ users, o will
be collectively maximal (for this group). Hence, we have that for any group of
at least ra and rb members, oa and ob will be collectively maximal, respectively.

We assume a new user un, where un∩U = ∅. The new user un strictly prefers
oa over all other objects O\oa. For the sake of simplicity, we consider a singe
new user; the proof for more users is similar. The new user set Un is generated
by adding the new user un to the user set U , i.e., Un = U ∪ un.

Let r′a and r′b be the ranks for the objects oa and ob, respectively, for the
new user set Un. We show that, in any case, rank r′a is lower than r′b.

First let us study what holds for the new rank of the object oa. We show that
for any group of ra members from the new user set Un, oa will be collectively
maximal. We assume a set S of ra members from Un; i.e., S ⊆ Un and |S| = ra.
Then, based on the users contained in S, we have two cases: (a) All users from
S initially belong to U ; i.e., S ⊆ Un. In this case oa is collectively maximal based
on the initial hypothesis. (b) The new user un is included to S; i.e., un ∈ S.
Also in this case oa is collectively maximal, since for the user un, oa is strictly
preferred over all other objects.

Hence, in any case for any group of ra members from Un, oa will be col-
lectively maximal. Also, depending on U , the minimum size of any group of
Un for which oa is collectively maximal, may be smaller than ra; i.e., r′a ≤ ra.
Therefore, we have that in any case r′a ≤ ra (1).

Now, let’s determine the new rank for the object ob. It easy to verify that, if
we consider groups of less than rb users from Un, then ob cannot be collectively
maximal for any group of that size. Therefore, we have to select groups with
equal to or greater than rb users from Un, in order for any group of that size to
consider ob as collectively maximal. Hence, we have that in any case r′b ≥ rb (2).

Since, ra < rb, for (1) and (2) we have that r′a < r′b. This concludes the proof
of Version 1.

Version 2: The second version can be proved in similar way, since it can be
“transformed” into the first version.

Assume we have a user uj ∈ U that has not expressed any preferences. Note
that the following also holds if we have more than one users that have not
expressed any preferences.

24 Nikos Bikakis et al.

In this case, it is apparent that the ranking process “ignores” the user uj .
In other words: let ra and rb be the rank for the objects oa and ob, respectively,
when we consider the set of users U . In addition, let r′a and r′b be the ranks if
we consider the users U\uj . Based on our ranking scheme, it is apparent that,
if ra > rb, then r′a > r′b.

In this version of the property, we assume that a user uj has not initially
expressed any preferences. Afterwards, uj states that he strictly prefers oa over
any other object. This scenario is equivalent to the following.

Since, as described above, the rankings are not effected if we remove uj ; we
initially consider the users U\uj . Afterwards, a user that strictly prefers oa over
all other objects is inserted in the users set U\uj . This is the same as the first
version of our property.

Note that, in order for the second version to be considered in our implemen-
tation, we have to modify the initialization of matching vector for the indifferent
attributes. Particularly, the matching vector for indifferent attributes should be
setting to 0, instead of 1. �

The following property ensures a low possibility of objects being ranked in the
same position.

Property 7. [Resolvability] Version 1: If two objects are ranked in the same
position, adding a new user can cause an object to be ranked above the other.

Version 2: Assume that two objects are ranked in the same position, and that
there is at least one user u which has not stated any preferences; if u expresses
preferences, then this can cause an object to be ranked above the other.

Proof. Version 1: Assume that we have the objects oa and ob. Let ra and rb be
the rank of objects oa and ob, respectively. Initially, the objects are ranked in
the same position, so we have that ra = rb. In order to prove this property, we
consider the following example.

Assume that we have an object set O and four users U (i.e., |U| = 4). For
each of the first two users (i.e., u1 and u2) the object oa is strictly preferred
over all other objects in O.

On the other hand, for each of the users u3 and u4, the object ob is strictly
preferred over the all other objects in O.

So, for the object oa, we have that, for any group of three members, oa will
be collectively maximal. This holds, since at least one of the three members is
one of the first two users (u1 or u2), for which oa is strictly preferred over all
other objects. In addition, it is apparent that three is the smallest size for which,
for any group of that size, oa will be collectively maximal.

According to the definition of the ranking scheme, if the rank of an object o
is τ , then τ is the smallest integer that, for any group of at least τ users, o will
be collectively maximal (for this group).

As a result, for the rank of oa we have that ra = 3. Using similar reasoning,
for the rank of ob we have that rb = 3. Hence, we have that in our example both
objects oa and ob have the same rank, i.e., ra = rb = 3.

Now lets assume that we add a new user u5, for which the object oa is strictly
preferred over the all other objects in O. So, for the following, we consider the
new users set U ′ that includes the new user u5, i.e., U ′ = U ∪ u5. We show that,
considering the new users set U ′, the new rank r′b of object ob will be greater

Finding Desirable Objects under Group Categorical Preferences ? 25

than the initial rank rb; and for oa its new rank r′a will be the same as the initial
ra rank. Hence, in any case, if we also consider a new user u5, the objects oa
and ob will have different ranks.

Considering the new users U ′, there is a group with three users for which
ob is not collectively maximal. For example, if we select the users u1, u2 and
u5, then ob is not collectively maximal. Hence, in order for ob to be collectively
maximal, we have to select a larger group (at least four users) from U ′. So,
four users is the smallest group, for which for any group of that size, ob will be
collectively maximal. As a result, r′b = 4. Hence, the new rank of the object ob
is greater than the initial rank.

Regarding the object oa, for any group of three users from U ′, oa will be
collectively maximal. This hold since, for the three out of the five users (i.e.,
u1, u2, u5), the object oa is strictly preferred over all other objects. In addition,
three users is the smallest group, for which for any group of that size, oa will be
collectively maximal. Therefore, the new rank of oa is r′a = 3.

So, the new ranks after the addition of user u5 will be r′a = 3 and r′b = 4,
i.e., the objects oa and ob will have different ranks. This concludes the proof of
Version 1.

Version 2: The second version can be proved in similar way, since it can be
“transformed” to the first version as in the proof of Property 6. �

Property 8. [Users’ Preferences Neutrality] Users with different number of
preferences, or different preference granularity, are equally important.

Proof. It is apparent from the ranking scheme definition that this property
holds. �

Property 9. [Objects’ Description Neutrality] Objects with different descrip-
tion (i.e., attributes values) granularity are equal important.

Proof. It is apparent from the ranking scheme definition that this property
holds. �

7 Extensions

Section 7.1 discusses the case of multi-valued attributes and Section 7.2 the case of
non-tree hierarchies. Section 7.3 presents an extension of IND (and thus of p-IND)
for the case when only a subset of the attributes is indexed. Section 7.4 discusses
semantics of objective attributes.

7.1 Multi-valued Attributes

There exist cases where objects have, or users specify, multiple values for an at-
tribute. Intuitively, we want the matching degree of an object to a user w.r.t. a
multi-valued attribute to be determined by the best possible match among their val-
ues. Note that, following a similar approach, different semantics can be adopted for
the matching degree of multi-valued attributes. For example, the matching degree

26 Nikos Bikakis et al.

of multi-valued attributes may be defined as the average or the minimum match
among their values.

Consider an attribute Ak, an object o and a user u, and also let {o.Ak[i]},
{u.Ak[j]} denote the set of values for the attribute Ak for object o, user u, respec-
tively. We define the matching degree of o to u w.r.t. Ak to be the largest among
matching degrees computed over pairs of {o.Ak[i]}, {u.Ak[j]} values. For instance,

in case of Jaccard coefficient we have, m.Ak = maxi,j
|o.Ak[i]∩u.Ak[j]|
|o.Ak[i]∪u.Ak[j]| .

In order to extend IND to handle multi-valued attributes, we make the fol-
lowing changes. We can relate an object ox to multiple virtual objects {ox[i]},
corresponding to different values in the multi-valued attributes. Each of these vir-
tual objects correspond to different rectangles in the transformed space. For object
ox, the R∗-Tree T contains a leaf entry ex whose MBR is the MBR enclosing all
rectangles of the virtual objects {ox[i]}. The leaf entry ex also keeps information
on how to re-construct all virtual objects. During execution of IND, when leaf
entry ex is de-heaped, all rectangles corresponding to virtual objects {ox[i]} are
re-constructed. Then, object ox is collectively maximal, if there exists no other
object which is collectively preferred over all virtual objects. If this is the case,
then all virtual objects are inserted in the list CM , and are used to prune other
entries. Upon termination, the virtual objects {ox[i]} are replaced by object ox.

7.2 Non-Tree Hierarchies

We consider the general case where an attribute hierarchy forms a directed acyclic
graph (dag), instead of a tree. The distinctive property of such a hierarchy is that
a category is allowed to have multiple parents. For example, consider an Attire
attribute hierarchy slightly different than that of Figure 1, which also has an new
attire category “Sport casual”. In this case, the “Sport casual” category will have
two parents, “Street wear” and “Casual”.

In the following, we extend the hierarchy transformation to handle dags. The
extension follows the basic idea of labeling schemes for dags, as presented in [2].
First, we obtain a spanning tree from the dag by performing a depth-first traversal.
Then, we assign intervals to nodes for the obtained tree hierarchy as in Section 4.3.
Next for each edge, i.e., child to parent relationship, not included in the spanning
tree, we propagate the intervals associated with a child to its parent, merging
adjacent intervals whenever possible. In the end, each node might be associated
with more than one interval.

The IND algorithm can be adapted for multi-interval hierarchy nodes similar to
how it can handle multi-valued attributes (Section 7.1). That is, an object may be
related to multiple virtual objects grouped together in a leaf entry of the R∗-Tree.

The following properties extend Proposition 1 for the general case of non-tree
hierarchies.

Proposition 4. For objects/users x, y, and an attribute Ak, let {x.Ik}, {y.Ik}
denote the set of intervals associated with the value of x, y on Ak. Then it holds
that:

Finding Desirable Objects under Group Categorical Preferences ? 27

(1) |x.Ak| =
∑

Ix∈{x.Ik}

‖Ix‖

(2) |x.Ak ∩ y.Ak| =
∑

Ix∈{x.Ik}
Iy∈{y.Ik}

‖Ix ∩ Iy‖

(3) |x.Ak ∪ y.Ak| =
∑

Ix∈{x.Ik}

‖Ix‖+
∑

Iy∈{y.Ik}

‖Iy‖ −
∑

Ix∈{x.Ik}
Iy∈{y.Ik}

‖Ix ∩ Iy‖

Proof. Regarding the first property, observe that |x.Ak| =
∥∥⋃

Ix∈{x.Ik} Ix
∥∥

=
∑
Ix∈{x.Ik} ‖Ix‖, since the intervals Ix are disjoint.

Also, |x.Ak ∩ y.Ak| =
∥∥(⋃

Ix∈{x.Ik} Ix
)
∩
(⋃

Iy∈{y.Ik} Iy
)∥∥ =∥∥⋃

Ix∈{x.Ik},Iy∈{y.Ik} Ix∩Iy
∥∥ =

∑
Ix∈{x.Ik},Iy∈{y.Ik} ‖Ix∩Iy‖, since the intervals

Ix ∩ Iy are disjoint.

Finally, the third property holds since |x.Ak ∪ y.Ak| = |x.Ak| + |y.Ak|−
|x.Ak ∩ y.Ak|. �

7.3 Subspace Indexing

This section deals with the case that the index on the set of objects is built on a
subset of the object attributes. Recall that R∗-Tree indices are efficient for small
dimensionalities, e.g., when the number of attributes is less than 10. Therefore, to
improve performance, it makes sense to build an index only on a small subspace
containing the attributes most frequently occuring in users’ preferences. In the
following, we present the changes to the IND algorithm necessary to handle this
case.

First, a leaf R∗-Tree entry ei contains a pointer to the disk page storing the
non-indexed attributes of the object oi corresponding to this entry. Second, given
a non-leaf R∗-Tree entry ei, we define its maximum matching degree on user uj

to be Mj
i .Ak =

‖ei.mbr.Ik∩uj .Ik‖
‖uj .Ik‖ with respect to an indexed attribute Ak (as in

regular IND), and Mj
i .Ak′ = 1 with respect to a non-indexed attribute Ak′ . Third,

for a leaf entry ei corresponding to object oi, its maximum matching degree is
equal to the matching degree of oi to uj w.r.t. Ak, as in regular IND. Note that
in this case an additional I/O operation is required to retrieve the non-indexed
attributes.

It is easy to see that the maximum matching degree Mj
i .Ak of entry ei on user

uj w.r.t. specified attribute Ak is an upper bound to the highest matching degree
among all objects in the group that ei defines. However, note that it is not a tight

upper bound as in the case of the regular IND (Proposition 3).

The remaining definitions, i.e., the maximum matching vector and the score
of an entry, as well as the pseudocode are identical to their counterparts in the
regular IND algorithm.

28 Nikos Bikakis et al.

7.4 Objective Attributes

In this section we describe objective attributes. As objective attributes we refer to the
attributes that the order of their values is the same for all users. Hence, in contrast
to the attributes considered before, the users are not expressing any preferences
over the objective attributes. Particularly, in objective attributes, their preference
relation is derived from the attributes’ semantics and it is the same for all users.
For instance, in our running example in addition to the restaurants’ attributes in
which different users may have different preferences (i.e., subjective attributes); we
can assume an objective attribute “Rating”, representing the restaurant’s score.
Attribute Rating is totally ordered, and higher rated restaurants are more prefer-
able from all users.

Based on the attributes’ semantics, we categorized attributes into two groups:
(1) objective attributes, and (2) subjective attributes. Let Ao ∈ A and As ∈ A denote
the objective and subjective attributes respectively, where Ao ∪As = A and Ao ∩
As = ∅.

Let two objects oa and ob, having an objective attribute Ak ∈ Ao. As oa.Ak
we denote the value of the attribute Ak for the object oa. Here, without loss of
generality, we assume that objective attributes are single-value numeric attributes,
and the object oa is better than another object ob on the objective attribute Ak,
iff oa.Ak > ob.Ak.

Considering objects with both objective and subjective attributes, the pre-
ferred and strictly preferred relations presented in Section 3, are defined as follows.

An object oa is preferred over ob, for user uj , denoted as oa �j ob iff (1) for

every specified subjective attribute Ah ∈ As it holds that mj
a.Ah ≥ mj

b.Ah, and
(2) for each objective attribute Ak ∈ Ao hold that oa.Ak ≥ ob.Ak. Moreover,
object oa is strictly preferred over ob, for user uj , denoted as oa �j ob iff (1) oa is
preferred over ob, (2) there exists a specified subjective attribute Ah ∈ As such
that mj

a.Ah > mj
b.Ah, and (3) there exists an objective attribute Ak ∈ Ao such

that oa.Ak > ob.Ak.

8 Experimental Analysis

Section 8.1 describes the datasets used for the evaluation. Sections 8.2 and 8.3
study the efficiency of the GMCO and p-GMCO algorithms, respectively. Finally,
Section 8.4 investigates the effectiveness of the ranking in the GRCO problem.

8.1 Datasets & User preferences

We use five datasets in our experimental evaluation, one synthetic and four real.
The first is Synthetic, where objects and users are synthetically generated. All
attributes have the same hierarchy, a binary tree of height log |A|, and thus all
attributes have the same number of leaf hierarchy nodes |A|. To obtain the set of
objects, we fix a level, `o (where `o = 1 corresponds to the leaves), in all attribute
hierarchies. Then, we randomly select nodes from this level to obtain the objects’
attribute value. The number of objects is denoted as |O|, while the number of
attributes for each object is denoted as d. Similarly, to obtain the set of users, we

Finding Desirable Objects under Group Categorical Preferences ? 29

Table 5 Parameters (Synthetic)

Description Symbol Values

Number of objects |O| 50K, 100K, 500K, 1M, 5M
Number of attribute d 2, 3, 4, 5, 6
Group size |U| 2, 4, 8, 16, 32
Hierarchy height log |A| 4, 6, 8, 10, 12
Hierarchy level for objects `o 1, 2, 3, 4, 5
Hierarchy level for users `u 2, 3, 4, 5, 6

fix a level, `u, in all hierarchies. The group size (i.e., number of users) is denoted
as |U|.

The second dataset is RestaurantsF, which contains 85, 681 US restaurant re-
trieved from Factual2. We consider three categorical attributes, Cuisine, Attire and
Parking. The hierarchies of these attributes are presented in Figure 1 (the figure
only depicts a subset of the hierarchy for Cuisine). Particularly, for the attributes
Cuisine, Attire and Parking, we have 6, 3, 3 levels and 126, 5, 5 leaf hierarchy
nodes, respectively.

The third dataset is ACM, which contains 281, 476 research publications from
the ACM, obtained from datahub3. The Category attribute is categorical and is
used by the ACM in order to classify research publications. The hierarchy for
this attributed is defined by the ACM Computing Classification System4, and is
organized in 4 levels and has 325 leaf nodes.

The fourth dataset is Cars, containing a set of 30, 967 car descriptions retrieved
from the Web5. We consider three attributes, Engine, Body and Transmission, hav-
ing 3, 4, 3 levels, and 11, 23, 5 leaf hierarchy nodes, respectively. We note that
this is not the same dataset used in [15].

The fifth dataset is RestaurantsR, obtained from a recommender system proto-
type6. This dataset contains a set of 130 restaurants descriptions and a set of 138
users along with their preferences. For our purposes, we consider four categorical
attributes, Cuisine, Smoke, Dress, and Ambiance, having 5, 3, 3, 3 levels, and 83,
3, 3, 3 leaf hierarchy nodes, respectively. This dataset is used in the effectiveness
analysis of the GRCO problem, while the other datasets are used in the efficiency
evaluation of the GMCO algorithms.

For the efficiency evaluation, the user preferences for real datasets are obtained
following two different approaches. In the first approach, denoted as Real prefer-

ences, we attempt to simulate real user preferences. Particularly, for the RestaurantF

dataset, we use as user preferences the restaurants’ descriptions from the highest
rated New York restaurant list7. For the Car dataset, the user preferences are ob-
tained from the top rated cars8. Finally, for the ACM dataset, the user preferences
are obtained by considering ACM categories from the papers published within

2 www.factual.com
3 datahub.io/dataset/rkb-explorer-acm
4 www.acm.org/about/class/ccs98-html
5 www.epa.gov
6 archive.ics.uci.edu/ml/datasets/Restaurant+&+consum er+data
7 www.yelp.com
8 www.edmunds.com/car-reviews/top-rated.html

30 Nikos Bikakis et al.

Table 6 Real Datasets Basic Characteristics

Dataset Number of Objects Attributes (Hierarchy height)

RestaurantsF 85, 691 Cuisine (6), Attire (3), Parking (3)
ACM 281, 476 Category (4)
Cars 30, 967 Engine (3), Body (4), Transmission (3)
RestaurantsR 130 Cuisine (5), Smoke (3), Dress (3), Ambiance (3)

a research group9. In the second approach, denoted as Synthetic preferences, the
user preferences are obtained using a method similar to this followed in Synthetic

dataset. Particularly, the user preferences are specified by randomly selecting hi-
erarchy nodes from the second hierarchy level (i.e., `u = 2). Table 6 summarizes
the basic characteristics of the employed real datasets.

8.2 Efficiency of the GMCO algorithms

For the GMCO problem, we implement IND (Section 4) and three flavors of the
BSL algorithm (Section 4.2), denoted BSL-BNL, BSL-SFS, and BSL-BBS, which
use the skyline algorithms BNL [19], SFS [27], BBS [66], respectively.

To gauge the efficiency of all algorithms, we measure: (1) the number of disk
I/O operations, denoted as I/Os; (2) the number of dominance checks, denoted as
Dom. Checks; and (3) the total execution time, denoted as Total Time, and mea-
sured in secs. In all cases, the reported time values are the averages of 3 executions.
All algorithms were written in C++, compiled with gcc, and the experiments were
performed on a 2GHz CPU.

8.2.1 Results on Synthetic Dataset

In this section we study the efficiency of the GMCO algorithms using the Synthetic

dataset described in Section 8.1.

Parameters. Table 5 lists the parameters that we vary and the range of values
examined for Synthetic. To segregate the effect of each parameter, we perform six
experiments, and in each we vary a single parameter, while we set the remaining
ones to their default (bold) values.

Varying the number of objects. In the first experiment, we study performance
with respect to the objects’ set cardinality |O|. Particularly, we vary the number
of objects from 50K up to 5M and measure the number of I/Os, the number
of dominance checks, and the total processing time, in Figures 3a, 3b and 3c,
respectively.

When the number of objects increases, the performance of all methods deteri-
orates. The number of I/Os performed by IND is much less than the BSL variants,
the reason being BSL needs to construct a file containing matching degrees. More-
over, the SFS and BBS variants have to preprocess this file, i.e., sort it and build
the R-Tree, respectively. Hence, BSL-BNL requires the fewest I/Os among the
BSL variants.

9 www.dblab.ntua.gr/pubs

Finding Desirable Objects under Group Categorical Preferences ? 31

102

103

104

105

106

107

50K 100K 500K 1M 5M

I/O
s

Number of Objects

IND
BSL-BNL
BSL-SFS
BSL-BBS

(a) I/O Operations

101

102

103

104

105

50K 100K 500K 1M 5M
D

om
in

an
ce

 C
he

ck
s

Number of Objects

IND
BSL-BNL
BSL-SFS
BSL-BBS

(b) Dom. Checks

100

101

102

103

104

50K 100K 500K 1M 5M

T
ot

al
 T

im
e

(s
ec

)

Number of Objects

IND
BSL-BNL
BSL-SFS
BSL-BBS

(c) Total Time

Fig. 3 GMCO algorithms, Synthetic: varying |O|

102

103

104

105

106

 2 3 4 5 6

I/O
s

Number of Attributes

IND
BSL-BNL
BSL-SFS
BSL-BBS

(a) I/O Operations

105

106

107

 2 3 4 5 6

D
om

in
an

ce
 C

he
ck

s

Number of Attributes

IND
BSL-BNL
BSL-SFS
BSL-BBS

(b) Dom. Checks

100

101

102

103

 2 3 4 5 6

T
ot

al
 T

im
e

(s
ec

)

Number of Attributes

IND
BSL-BNL
BSL-SFS
BSL-BBS

(c) Total Time

Fig. 4 GMCO algorithms, Synthetic: varying d

All methods require roughly the same number of dominance checks as seen in
Figure 3b. IND performs fewer checks, while BSL-BNL the most. Compared to the
other BSL variants, BSL-BNL performs more checks because, unlike the others,
computes the skyline over an unsorted file. IND performs as well as BSL-SFS and
BSL-BBS, which have the easiest task. Overall, Figure 3c shows that IND is more
than an order of magnitude faster than the BSL variants.

Varying the number of attributes. Figure 4 investigates the effect as we increase
the number of attributes d from 2 up to 6. The I/O cost, shown in Figure 4a of
the BSL variants does not depend on |O| and thus remains roughly constant as
d increases. On the other hand, the I/O cost of IND increases slightly with d.
The reason is that d determines the dimensionality of the R-Tree that IND uses.
Further, notice that the number of dominance checks depicted in Figure 4b is
largely the same across methods. Figure 4c shows that the total time of IND
increases with d, but it is still significantly smaller (more than 4 times) than the
BSL methods even for d = 6.

Varying the group size. In the next experiment, we vary the users’ set cardinality
|U| from 2 up to 32; results are depicted in Figure 5. The performance of all methods
deteriorates with |U|. The I/O cost for IND is more than an order of magnitude
smaller than the BSL variants, and the gap increases with |U|, as Figure 5a shows.
As before, BSL-BNL requires the fewest I/Os among the BSL variants.

32 Nikos Bikakis et al.

103

104

105

106

 2 4 8 16 32

I/O
s

Group Size

IND
BSL-BNL
BSL-SFS
BSL-BBS

(a) I/O Operations

103

104

105

106

107

108

 2 4 8 16 32
D

om
in

an
ce

 C
he

ck
s

Group Size

IND
BSL-BNL
BSL-SFS
BSL-BBS

(b) Dom. Checks

100

101

102

103

104

 2 4 8 16 32

T
ot

al
 T

im
e

(s
ec

)

Group Size

IND
BSL-BNL
BSL-SFS
BSL-BBS

(c) Total Time

Fig. 5 GMCO algorithms, Synthetic: varying |U|

Regarding the number of dominance checks, shown in Figure 5b, IND performs
the fewest, except for 2 and 4 users. In these settings, the BBS variant performs
the fewest checks, as it is able to quickly identify the skyline and prune large part
of the space. Note that |U| determines the dimensionality of the space that BSL-
BBS indexes. As expected, for more than 4 dimensions the performance of BBS
starts to take a hit. Overall, Figure 3c shows that IND is more than an order of
magnitude faster than all the BSL variants, among which BSS-BNL is the fastest.

Varying the hierarchy height. In this experiment, we vary the hierarchy height
log |A| from 4 up to 12 levels. Figure 6 illustrates the results. All methods are
largely unaffected by this parameter. Note that the number of dominance checks
varies with log |A|, and IND performs roughly as many checks as the BSL variants
which operated on a sorted file, i.e., BSL-SFS and BSL-BBS. Overall, IND is more
than an order of magnitude faster than all BSL variants.

Varying the objects level. Figure 7 depicts the results of varying the level `o
from which we draw the objects’ values. The performance of all methods is not
significantly affected by `o. Note though that the number of dominance checks
increases as we select values from higher levels.

Varying the users level. Figure 8 depicts the results of varying the level `u
from which we draw the users’ preference values. As with the case of varying
`o, the number of dominance checks increases with `u, while the performance of
all methods remains unaffected. The total time of IND takes its highest value of
`u = 6, as the number of required dominance checks increases sharply for this
setting. Nonetheless, IND is around 3 times faster than BSL-BNL.

8.2.2 Results on Real Datasets

In this section we study the efficiency of the GMCO algorithms using the three
real datasets described in Section 8.1. For each dataset, we examine both real and
synthetic preferences, obtained as described in Section 8.1. Also, we vary the group
size |U| from 2 up to 32 users.

Figures 9 & 10 present the result for RestaurantsF dataset, for real and synthetic
preferences, respectively. Similarly, Figures 11 & 12 present the result for ACM

dataset, and Figures 13 & 14 for Cars dataset. As we can observe, the performance

Finding Desirable Objects under Group Categorical Preferences ? 33

103

104

105

106

 4 6 8 10 12

I/O
s

Number of Hierarchy Levels

IND
BSL-BNL
BSL-SFS
BSL-BBS

(a) I/O Operations

105

106

107

108

 4 6 8 10 12
D

om
in

an
ce

 C
he

ck
s

Number of Hierarchy Levels

IND
BSL-BNL
BSL-SFS
BSL-BBS

(b) Dom. Checks

101

102

103

 4 6 8 10 12

T
ot

al
 T

im
e

(s
ec

)

Number of Hierarchy Levels

IND
BSL-BNL
BSL-SFS
BSL-BBS

(c) Total Time

Fig. 6 GMCO algorithms, Synthetic: varying log |A|

103

104

105

106

 1 2 3 4 5

I/O
s

Hierarchy Level of Objects

IND
BSL-BNL
BSL-SFS
BSL-BBS

(a) I/O Operations

105

106

107

 1 2 3 4 5

D
om

in
an

ce
 C

he
ck

s

Hierarchy Level of Objects

IND
BSL-BNL
BSL-SFS
BSL-BBS

(b) Dom. Checks

101

102

103

 1 2 3 4 5

T
ot

al
 T

im
e

(s
ec

)

Hierarchy Level of Objects

IND
BSL-BNL
BSL-SFS
BSL-BBS

(c) Total Time

Fig. 7 GMCO algorithms, Synthetic: varying `o

103

104

105

106

 2 3 4 5 6

I/O
s

Hierarchy Level of Users

IND
BSL-BNL
BSL-SFS
BSL-BBS

(a) I/O Operations

105

106

107

108

 2 3 4 5 6

D
om

in
an

ce
 C

he
ck

s

Hierarchy Level of Users

IND
BSL-BNL
BSL-SFS
BSL-BBS

(b) Dom. Checks

101

102

103

 2 3 4 5 6

T
ot

al
 T

im
e

(s
ec

)

Hierarchy Level of Users

IND
BSL-BNL
BSL-SFS
BSL-BBS

(c) Total Time

Fig. 8 GMCO algorithms, Synthetic: varying `u

of the examined methods is almost similar for all datasets, real and synthetic.
Also, similar performance is observed in real and synthetic user preferences. In
most cases, IND outperforms the BSL methods by at least an order of magnitude
in terms of I/Os and total time. Additionally, IND performs less dominance checks
than the BSL methods in almost all cases.

Regarding BSL methods, BSL-BNL outperforms the others in terms of I/Os
and total time; while BSL-SFS and BNL-BBS have the almost the same perfor-
mance. Regarding the number of dominance checks, for less than 16 users BSL-

34 Nikos Bikakis et al.

101

102

103

104

105

 2 4 8 16 32

I/O
s

Group Size

IND
BSL-BNL
BSL-SFS
BSL-BBS

(a) I/O Operations

103

104

105

106

107

 2 4 8 16 32
D

om
in

an
ce

 C
he

ck
s

Group Size

IND
BSL-BNL
BSL-SFS
BSL-BBS

(b) Dom. Checks

102

103

104

105

106

 2 4 8 16 32

T
ot

al
 T

im
e

(s
ec

)

Group Size

IND
BSL-BNL
BSL-SFS
BSL-BBS

(c) Total Time

Fig. 9 GMCO algorithms, RestaurantsF (Real preferences): varying |U|

101

102

103

104

105

 2 4 8 16 32

I/O
s

Group Size

IND
BSL-BNL
BSL-SFS
BSL-BBS

(a) I/O Operations

105

106

107

108

 2 4 8 16 32

D
om

in
an

ce
 C

he
ck

s

Group Size

IND
BSL-BNL
BSL-SFS
BSL-BBS

(b) Dom. Checks

102

103

104

105

106

 2 4 8 16 32

T
ot

al
 T

im
e

(s
ec

)

Group Size

IND
BSL-BNL
BSL-SFS
BSL-BBS

(c) Total Time

Fig. 10 GMCO algorithms, RestaurantsF (Synthetic preferences): varying |U|

101

102

103

104

105

106

 2 4 8 16 32

I/O
s

Group Size

IND
BSL-BNL
BSL-SFS
BSL-BBS

(a) I/O Operations

106

107

108

109

 2 4 8 16 32

D
om

in
an

ce
 C

he
ck

s

Group Size

IND
BSL-BNL
BSL-SFS
BSL-BBS

(b) Dom. Checks

103

104

105

106

 2 4 8 16 32

T
ot

al
 T

im
e

(s
ec

)

Group Size

IND
BSL-BNL
BSL-SFS
BSL-BBS

(c) Total Time

Fig. 11 GMCO algorithms, ACM (Real preferences): varying |U|

BNL performs more dominance checks than other BSL methods; while for 32 users,
in many cases (Figures 9b, 10b, 11b) BSL-BNL performs the fewest dominance
checks from BSL methods. Finally, for less than 8 users, BNL-BBS perform fewer
dominance checks than other BSL methods.

Finding Desirable Objects under Group Categorical Preferences ? 35

101

102

103

104

105

106

 2 4 8 16 32

I/O
s

Group Size

IND
BSL-BNL
BSL-SFS
BSL-BBS

(a) I/O Operations

103

104

105

106

107

108

109

 2 4 8 16 32
D

om
in

an
ce

 C
he

ck
s

Group Size

IND
BSL-BNL
BSL-SFS
BSL-BBS

(b) Dom. Checks

101

102

103

104

105

106

 2 4 8 16 32

T
ot

al
 T

im
e

(s
ec

)

Group Size

IND
BSL-BNL
BSL-SFS
BSL-BBS

(c) Total Time

Fig. 12 GMCO algorithms, ACM (Synthetic preferences): varying |U|

100

101

102

103

104

105

 2 4 8 16 32

I/O
s

Group Size

IND
BSL-BNL
BSL-SFS
BSL-BBS

(a) I/O Operations

102

103

104

105

106

107

108

109

 2 4 8 16 32

D
om

in
an

ce
 C

he
ck

s

Group Size

IND
BSL-BNL
BSL-SFS
BSL-BBS

(b) Dom. Checks

101

102

103

104

105

 2 4 8 16 32

T
ot

al
 T

im
e

(s
ec

)

Group Size

IND
BSL-BNL
BSL-SFS
BSL-BBS

(c) Total Time

Fig. 13 GMCO algorithms, Cars (Real preferences): varying |U|

8.3 Efficiency of the p-GMCO Algorithms

In this section, we investigate the performance of the p-GMCO algorithms (Sec-
tion 5). For the p-GMCO problem, we implement the respective extensions of all
algorithms (IND and BSL variants), distinguished by a p prefix. As before, we
measure the number of I/O operations, dominance checks and the total time. In
the following experiments, we use the three real datasets and vary the number of
users from 2 up to 1024, while p = 30%. Also, we also vary the parameter p from
10% up to 50%. However, the performance of all methods (in terms of I/Os and
total time) remains unaffected by p; hence, the relevant figures are omitted.

Figures 15 & 16 present the result for RestaurantsF dataset, for real and syn-
thetic preferences, respectively. Similarly, Figures 17 & 18 corresponds to the ACM

dataset, and Figures 19 & 20 to Cars.

As we can observe, IND outperforms the BSL methods in almost all cases.
Particularly, the number of I/O operations performed by IND is several order
of magnitude lower than the BSL variants. In addition, in almost all cases, IND
performs fewer dominance checks than the BSL methods. The number of I/Os
performed by IND remains stable for more than 16 users; while for BSL methods,
the I/O operations are constantly increased up to 256 users. Regarding dominance
check, the number of dominance checks increases with |U| following an almost
similar trend for all methods.

36 Nikos Bikakis et al.

100

101

102

103

104

105

 2 4 8 16 32

I/O
s

Group Size

IND
BSL-BNL
BSL-SFS
BSL-BBS

(a) I/O Operations

102

103

104

105

106

107

 2 4 8 16 32
D

om
in

an
ce

 C
he

ck
s

Group Size

IND
BSL-BNL
BSL-SFS
BSL-BBS

(b) Dom. Checks

101

102

103

104

105

 2 4 8 16 32

T
ot

al
 T

im
e

(s
ec

)

Group Size

IND
BSL-BNL
BSL-SFS
BSL-BBS

(c) Total Time

Fig. 14 GMCO algorithms, Cars (Synthetic preferences): varying |U|

101

102

103

104

105

106

107

 2 4 8 16 32 64 256 1024

I/O
s

Group Size

p-IND
p-BSL-BNL
p-BSL-SFS
p-BSL-BBS

(a) I/O Operations

103

104

105

106

107

108

109

1010

 2 4 8 16 32 64 256 1024

D
om

in
an

ce
 C

he
ck

s

Group Size

p-IND
p-BSL-BNL
p-BSL-SFS
p-BSL-BBS

(b) Dom. Checks

102

103

104

105

106

107

 2 4 8 16 32 64 256 1024

T
ot

al
 T

im
e

(s
ec

)

Group Size

p-IND
p-BSL-BNL
p-BSL-SFS
p-BSL-BBS

(c) Total Time

Fig. 15 p-GMCO algorithms, RestaurantsF (Real preferences): varying |U|

101

102

103

104

105

106

107

108

109

1010

 2 4 8 16 32 64 256 1024

I/O
s

Group Size

p-IND
p-BSL-BNL
p-BSL-SFS
p-BSL-BBS

(a) I/O Operations

105

106

107

108

109

1010

 2 4 8 16 32 64 256 1024

D
om

in
an

ce
 C

he
ck

s

Group Size

p-IND
p-BSL-BNL
p-BSL-SFS
p-BSL-BBS

(b) Dom. Checks

102

103

104

105

106

107

108

109

 2 4 8 16 32 64 256 1024

T
ot

al
 T

im
e

(s
ec

)

Group Size

p-IND
p-BSL-BNL
p-BSL-SFS
p-BSL-BBS

(c) Total Time

Fig. 16 p-GMCO algorithms, RestaurantsF (Synthetic preferences): varying |U|

Finally, regarding BSL methods, BSL-BNL outperforms the other BSL meth-
ods in terms of I/Os and total time; while BSL-SFS and BNL-BBS have almost
the same performance. As far as dominance checks, in some cases (Figures 15b &
17b) BSL-BNL outperforms all BSL methods, while in other cases (Figures 16b,
18b, 19b, 20b), BSL-BNL performs more dominance checks than the other BSL
methods.

Finding Desirable Objects under Group Categorical Preferences ? 37

101

102

103

104

105

106

107

108

 2 4 8 16 32 64 256 1024

I/O
s

Group Size

p-IND
p-BSL-BNL
p-BSL-SFS
p-BSL-BBS

(a) I/O Operations

106

107

108

109

 2 4 8 16 32 64 256 1024
D

om
in

an
ce

 C
he

ck
s

Group Size

p-IND
p-BSL-BNL
p-BSL-SFS
p-BSL-BBS

(b) Dom. Checks

103

104

105

106

107

108

 2 4 8 16 32 64 256 1024

T
ot

al
 T

im
e

(s
ec

)

Group Size

p-IND
p-BSL-BNL
p-BSL-SFS
p-BSL-BBS

(c) Total Time

Fig. 17 p-GMCO algorithms, ACM (Real preferences): varying |U|

101

102

103

104

105

106

107

 2 4 8 16 32 64 256 1024

I/O
s

Group Size

p-IND
p-BSL-BNL
p-BSL-SFS
p-BSL-BBS

(a) I/O Operations

103

104

105

106

107

108

109

 2 4 8 16 32 64 256 1024

D
om

in
an

ce
 C

he
ck

s

Group Size

p-IND
p-BSL-BNL
p-BSL-SFS
p-BSL-BBS

(b) Dom. Checks

101

102

103

104

105

106

107

 2 4 8 16 32 64 256 1024

T
ot

al
 T

im
e

(s
ec

)

Group Size

p-IND
p-BSL-BNL
p-BSL-SFS
p-BSL-BBS

(c) Total Time

Fig. 18 p-GMCO algorithms, ACM (Synthetic preferences): varying |U|

100

101

102

103

104

105

106

107

108

109

 2 4 8 16 32 64 256 1024

I/O
s

Group Size

p-IND
p-BSL-BNL
p-BSL-SFS
p-BSL-BBS

(a) I/O Operations

102

103

104

105

106

107

108

109

 2 4 8 16 32 64 256 1024

D
om

in
an

ce
 C

he
ck

s

Group Size

p-IND
p-BSL-BNL
p-BSL-SFS
p-BSL-BBS

(b) Dom. Checks

101

102

103

104

105

106

107

108

 2 4 8 16 32 64 256 1024

T
ot

al
 T

im
e

(s
ec

)

Group Size

p-IND
p-BSL-BNL
p-BSL-SFS
p-BSL-BBS

(c) Total Time

Fig. 19 p-GMCO algorithms, Cars (Real preferences): varying |U|

8.4 Effectiveness of GRCO

In this section we study the effectiveness of the GRCO problem (Section 6). We
compare our RANK-CM algorithm (Section 6.1) to nine popular aggregations
strategies adopted by most group recommender systems [20]. Particularly, we im-
plement the following aggregation strategies:

− Additive (ADD): adds the individual matching degrees.
− Multiplicative (MULT): multiplies the individual matching degrees.

38 Nikos Bikakis et al.

100

101

102

103

104

105

106

 2 4 8 16 32 64 256 1024

I/O
s

Group Size

p-IND
p-BSL-BNL
p-BSL-SFS
p-BSL-BBS

(a) I/O Operations

102

103

104

105

106

107

 2 4 8 16 32 64 256 1024
D

om
in

an
ce

 C
he

ck
s

Group Size

p-IND
p-BSL-BNL
p-BSL-SFS
p-BSL-BBS

(b) Dom. Checks

101

102

103

104

105

106

 2 4 8 16 32 64 256 1024

T
ot

al
 T

im
e

(s
ec

)

Group Size

p-IND
p-BSL-BNL
p-BSL-SFS
p-BSL-BBS

(c) Total Time

Fig. 20 p-GMCO algorithms, Cars (Synthetic preferences): varying |U|

− Least Misery (MISERY): considers the minimum of individual matching de-
grees.

− Most Pleasure (PLEASURE): considers the maximum of individual matching
degrees.

− Average Without Misery (AVG MISERY): takes the average matching degrees,
excluding matching degrees below a threshold;

− Average Without Misery Threshold-free (AVG MISERY+): is a strategy intro-
duced here, similar to AVG MISERY, with the difference that the threshold is
set to the minimum of individual matching degrees.

− Copeland Rule (COPELAND): counts the number of times an object has higher
individual matching degrees than the rest of the objects, minus the number of
times the object has lower individual matching degrees.

− Approval Voting (APPROVAL): counts the number of individual matching de-
grees with values greater than or equal to a threshold.

− Borda Count (BORDA): adds the scores computed per matching degree ac-
cording to its rank in a user’s preference list (the matching degree with the
lowest value gets a zero score, the next one point, and so on).

Note that, the threshold in AVG MISERY and APPROVAL strategies is set
to 0.5.

To gauge the effectiveness of our ranking scheme, we use the RestaurantsR

dataset. We use the reviews from all users and extract a ranked list of the most
popular restaurants to serve as the ground truth. Then, we compare the ranked
lists returned by RANK-CM and the other aggregation strategies to the ground
truth, computing Precision and the Generalized Spearman’s Footrule [31], in sev-
eral ranks and for different group sizes. In order to construct group of users, for
each group size, we randomly select users, composing 500 groups of the same size.
Hence, in each experiment the average measurements are presented.

Varying the group size. In the first experiment (Figures 21 & 22), we consider
different group sizes, varying the number of users, from 5 to 138. We compute
the precision and the Spearman’s footrule for the ranked listed returned by all
methods, compared to the ground truth list, at rank 10 (Figure 21) and rank 20
(Figure 22).

In Figure 21, we consider the first ten restaurants retrieved (i.e., at rank 10); the
precision for each method is defined as the number of common restaurants between

Finding Desirable Objects under Group Categorical Preferences ? 39

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5

P
re

ci
si

on

Rank

RANK-CS

ADD

MULT

MISERY

PLEASURE

AVG_MISERY

AVG_MISERY+

COPELAND

APPROVAL

BORDA

 0

 0.1

 0.2

 0.3

 0 20 40 60 80 100 120 140

P
re

ci
si

on

Group Size

(a) Precision

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140

S
pe

ar
m

an
’s

 fo
ot

ru
le

Group Size

(b) Spearman’s footrule

Fig. 21 RestaurantsR (Rank 10): varying |U|

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 20 40 60 80 100 120 140

P
re

ci
si

on

Group Size

(a) Precision

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140

S
pe

ar
m

an
’s

 fo
ot

ru
le

Group Size

(b) Spearman’s footrule

Fig. 22 RestaurantsR (Rank 20): varying |U|

the ground truth list and the ranked list returned by each method, divided by ten.
For example, in Figure 21a, for the groups of 20 users, RANK-CM has precision
around 0.2; that is, among the first ten restaurants retrieved, RANK-CM retrieves
in average two popular restaurants. On the other hand, BORDA and COPELAND
retrieve in average one popular restaurant, and have precision around 0.1.

Regarding the results at rank 10, as we can observe from Figure 21, RANK-CM
outperforms all other methods in both metrics. Note that, Spearman’s footrule
values range from 0 to 1, where lower values indicate a better match to the
ground truth (0 means that the two lists are identical). Regarding the other ag-
gregation strategies, the best results are provided by COPELAND, BORDA and
AVG MISERY+, while MISERY and PLEASURE performed the worst.

Similar results and observations hold at rank 20 (Figures 22), where RANK-
CM outperforms all other methods, with COPELAND, ADD and AVG MISERY
being the best alternatives.

Overall, RANK-CM performs better in terms of precision and Spearman’s
footrule than the other strategies, in all cases. The COPELAND strategy seems
to be the best alternative, while MISERY and PLEASURE the worst.

Varying rank. In this experiment, we consider three different group sizes (i.e.,
10, 20, 30) and compute the precision and the Spearman’s footrule from rank 4

40 Nikos Bikakis et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 5 10 15 20 25 30 35

P
re

ci
si

on

Rank

(a) Precision

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35

S
pe

ar
m

an
’s

 fo
ot

ru
le

Rank

(b) Spearman’s footrule

Fig. 23 RestaurantsR (|U| = 10): varying rank

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 5 10 15 20 25 30 35

P
re

ci
si

on

Rank

(a) Precision

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35

S
pe

ar
m

an
’s

 fo
ot

ru
le

Rank

(b) Spearman’s footrule

Fig. 24 RestaurantsR (|U| = 20): varying rank

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 5 10 15 20 25 30 35

P
re

ci
si

on

Rank

(a) Precision

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35

S
pe

ar
m

an
’s

 fo
ot

ru
le

Rank

(b) Spearman’s footrule

Fig. 25 RestaurantsR (|U| = 30): varying rank

to rank 32. As we can observe from Figures 23, 24 & 25, the performance of all
methods is almost similar for the examined group sizes. The RANK-CM achieves
better performance in terms of precision and Spearman’s footrule in almost all
examined ranks, with the exceptions at ranks 4 and 6 for group sizes 10 and
30, where COPELAND achieves almost the same performance with RANK-CM.
Regarding the other methods, the best performance is from COPELAND, ADD
and AVG MISERY+.

Finding Desirable Objects under Group Categorical Preferences ? 41

9 Conclusions

This work addressed objective ranking techniques for a group of preferences over
categorical attributes, where the goal is to rank objects based on what is con-
sidered ideal by all users. In particular, we study three related problems based
on a double Pareto aggregation. The first is to return the set of objects that are
unanimously considered ideal by the entire group. In the second problem, we relax
the requirement for unanimity and only require a percentage of users to agree.
Then, in the third problem, we devise an effective ranking scheme based on our
double Pareto aggregation framework. The proposed methods take advantage of a
transformation of the categorical attribute values in order to use a standard index
structure. A detailed experimental study verified the efficiency and effectiveness
of our techniques.

References

1. G. Adomavicius and A. Tuzhilin. Toward the Next Generation of Recommender Sys-
tems: A Survey of the State-of-the-Art and Possible Extensions. IEEE Transactions on
Knowledge and Data Engineering (TKDE), 17(6), 2005.

2. R. Agrawal, A. Borgida, and H. V. Jagadish. Efficient Management of Transitive Rela-
tionships in Large Data and Knowledge Bases. In Proc. of the ACM SIGMOD Intl. Conf.
on Management of Data (SIGMOD), 1989.

3. R. Agrawal and E. L. Wimmers. A Framework for Expressing and Combining Preferences.
In Proc. of the ACM SIGMOD Intl. Conf. on Management of Data (SIGMOD), 2000.

4. M. D. M. andJignesh M. Patel and H. V. Jagadish. Efficient Skyline Computation over
Low-Cardinality Domains. In Proc. of the Intl. Conf. on Very Large Databases (VLDB),
2007.

5. L. Ardissono, A. Goy, G. Petrone, M. Segnan, and P. Torasso. Intrigue: Personalized
Recommendation of Tourist Attractions for Desktop and Hand Held Devices. Applied
Artificial Intelligence, 17(8-9), 2003.

6. K. J. Arrow. Social Choice and Individual Values. Yale University Press, 2nd edition,
1963.

7. J. A. Aslam and M. H. Montague. Models for Metasearch. In Proc. of the Intl. ACM
SIGIR Conf. on Research and Development in Information Retrieval (SIGIR), 2001.

8. E.-A. Baatarjav, S. Phithakkitnukoon, and R. Dantu. Group Recommendation System
for Facebook. In OTM Workshops, 2008.

9. L. Baltrunas, T. Makcinskas, and F. Ricci. Group recommendations with rank aggregation
and collaborative filtering. In ACM conference on Recommender systems, RecSys, 2010.

10. D. G. Bar and O. Glinansky. Family Stereotyping - A Model to Filter TV Programs for
Multiple Viewers. In Workshop on Personalization in Future TV, 2002.

11. I. Bartolini, P. Ciaccia, and M. Patella. Efficient Sort-based Skyline Evaluation. ACM
Transactions on Database Systems (TODS), 33(4), 2008.

12. N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-Tree: An Efficient and
Robust Access Method for Points and Rectangles. In Proc. of the ACM SIGMOD Intl.
Conf. on Management of Data (SIGMOD), 1990.

13. J. L. Bentley, K. L. Clarkson, and D. B. Levine. Fast Linear Expected-Time Algorithms for
Computing Maxima and Convex Hulls. In Proc. of ACM-SIAM Symposium on Discrete
Algorithms, 1990.

14. S. Berkovsky and J. Freyne. Group-based recipe recommendations: analysis of data ag-
gregation strategies. In ACM conference on Recommender systems, RecSys, 2010.

15. N. Bikakis, K. Benouaret, and D. Sacharidis. Reconciling Multiple Categorical Preferences
with Double Pareto-based Aggregation. In Proc. of the Intl. Conf. on Database Systems
for Advanced Applications (DASFAA), 2014.

16. N. Bikakis, D. Sacharidis, and T. Sellis. A Study on External Memory Scan-Based Skyline
Algorithms. In Database and Expert Systems Applications - 25th International Conference
(DEXA), 2014.

42 Nikos Bikakis et al.

17. J. Bobadilla, F. Ortega, A. Hernando, and A. Gutiérrez. Recommender systems survey.
Knowl.-Based Syst., 46, 2013.

18. L. Boratto and S. Carta. State-of-the-Art in Group Recommendation and New Approaches
for Automatic Identification of Groups. In Information Retrieval and Mining in Dis-
tributed Environments. 2011.

19. S. Börzsönyi, D. Kossmann, and K. Stocker. The Skyline Operator. In Proc. of the IEEE
Intl. Conf. on Data Engineering (ICDE), 2001.

20. I. Cantador and P. Castells. Group Recommender Systems: New Perspectives in the Social
Web. In Recommender Systems for the Social Web. 2012.

21. C. Y. Chan, P.-K. Eng, and K.-L. Tan. Stratified Computation of Skylines with Partially-
Ordered Domains. In Proc. of the ACM SIGMOD Intl. Conf. on Management of Data
(SIGMOD), 2005.

22. C. Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. H. Tung, and Z. Zhang. Finding k-dominant
Skylines in High Dimensional Space. In Proc. of the ACM SIGMOD Intl. Conf. on Man-
agement of Data (SIGMOD), 2006.

23. Y.-C. Chang, L. D. Bergman, V. Castelli, C.-S. Li, M.-L. Lo, and J. R. Smith. The Onion
Technique: Indexing for Linear Optimization Queries. In Proc. of the ACM SIGMOD
Intl. Conf. on Management of Data (SIGMOD), 2000.

24. D. L. Chao, J. Balthrop, and S. Forrest. Adaptive radio: achieving consensus using negative
preferences. In ACM Conference on Supporting Group Work, 2005.

25. L. Chen and X. Lian. Efficient Processing of Metric Skyline Queries. IEEE Transactions
on Knowledge and Data Engineering (TKDE), 21(3), 2009.

26. J. Chomicki. Preference formulas in relational queries. ACM Transactions on Database
Systems (TODS), 28(4), 2003.

27. J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with Presorting. In Proc. of the
IEEE Intl. Conf. on Data Engineering (ICDE), 2003.

28. A. Crossen, J. Budzik, and K. J. Hammond. Flytrap: intelligent group music recommen-
dation. In International Conference on Intelligent User Interfaces, 2002.

29. C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation methods for the
Web. In Proc. of the Intl. World Wide Web Conf. (WWW), 2001.

30. M. Elahi, M. Ge, F. Ricci, D. Massimo, and S. Berkovsky. Interactive Food Recommen-
dation for Groups. In ACM Conference on Recommender Systems, RecSys, 2014.

31. R. Fagin, R. Kumar, and D. Sivakumar. Comparing Top k Lists. SIAM J. Discrete Math.,
17(1), 2003.

32. M. Farah and D. Vanderpooten. An Outranking Approach for Rank Aggregation in Infor-
mation Retrieval. In Proc. of the Intl. ACM SIGIR Conf. on Research and Development
in Information Retrieval (SIGIR), 2007.

33. E. A. Fox and J. A. Shaw. Combination of Multiple Searches. In Proc. of the Text Retrieval
Conf. (TREC), 1993.

34. I. Garcia, L. Sebastia, and E. Onaindia. On the design of individual and group recom-
mender systems for tourism. Expert Syst. Appl., 38(6), 2011.

35. M. Gartrell, X. Xing, Q. Lv, A. Beach, R. Han, S. Mishra, and K. Seada. Enhancing group
recommendation by incorporating social relationship interactions. In ACM international
conference on Supporting group work, GROUP, 2010.

36. P. Godfrey, R. Shipley, and J. Gryz. Algorithms and analyses for maximal vector compu-
tation. The Intl. Journal on Very Large Data Bases (VLDBJ), 16(1), 2007.

37. V. Hristidis, N. Koudas, and Y. Papakonstantinou. PREFER: A System for the Efficient
Execution of Multi-parametric Ranked Queries. In Proc. of the ACM SIGMOD Intl. Conf.
on Management of Data (SIGMOD), 2001.

38. I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top-k query processing techniques
in relational database systems. ACM Computing Surveys, 40(4), 2008.

39. A. Jameson. More than the sum of its members: challenges for group recommender sys-
tems. In Working conference on Advanced visual interfaces, 2004.

40. A. Jameson and B. Smyth. Recommendation to Groups. In The Adaptive Web, 2007.
41. R. Kannan, M. Ishteva, and H. Park. Bounded matrix factorization for recommender

system. Knowl. Inf. Syst., 39(3), 2014.
42. J. Kay and W. Niu. Adapting Information Delivery to Groups of People. In Workshop

on New Technologies for Personalized Information Access, 2005.
43. W. Kießling. Foundations of Preferences in Database Systems. In Proc. of the Intl. Conf.

on Very Large Databases (VLDB), 2002.

Finding Desirable Objects under Group Categorical Preferences ? 43

44. J. K. Kim, H. K. Kim, H. Y. Oh, and Y. U. Ryu. A group recommendation system for
online communities. International Journal of Information Management, 30(3), 2010.

45. D. Kossmann, F. Ramsak, and S. Rost. Shooting Stars in the Sky: An Online Algorithm
for Skyline Queries. In Proc. of the Intl. Conf. on Very Large Databases (VLDB), 2002.

46. G. Koutrika and Y. E. Ioannidis. Personalization of Queries in Database Systems. In
Proc. of the IEEE Intl. Conf. on Data Engineering (ICDE), 2004.

47. H. T. Kung, F. Luccio, and F. P. Preparata. On Finding the Maxima of a Set of Vectors.
Journal of ACM (JACM), 22(4), 1975.

48. M. Lacroix and P. Lavency. Preferences: Putting More Knowledge into Queries. In Proc.
of the Intl. Conf. on Very Large Databases (VLDB), 1987.

49. J. Lee and S.-w. Hwang. BSkyTree: scalable skyline computation using a balanced pivot
selection. In Proc. of the Intl. Conf. on Extending Database Technology (EDBT), 2010.

50. J. Lee, G. won You, S. won Hwang, J. Selke, and W.-T. Balke. Interactive skyline queries.
Inf. Sci., 211, 2012.

51. K. C. K. Lee, B. Zheng, H. Li, and W.-C. Lee. Approaching the Skyline in Z Order. In
Proc. of the Intl. Conf. on Very Large Databases (VLDB), 2007.

52. X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang. Selecting Stars: The k Most Representative
Skyline Operator. In Proc. of the IEEE Intl. Conf. on Data Engineering (ICDE), 2007.

53. B. Liu and C.-Y. Chan. ZINC: Efficient Indexing for Skyline Computation. Proc. of the
VLDB Endowment, 4(3), 2010.

54. C. Lofi and W.-T. Balke. On Skyline Queries and How to Choose from Pareto Sets. In
Advanced Query Processing (1). 2013.

55. H. Lu, C. S. Jensen, and Z. Zhang. Flexible and Efficient Resolution of Skyline Query Size
Constraints. IEEE Transactions on Knowledge and Data Engineering (TKDE), 23(7),
2011.

56. J. Masthoff. Group Modeling: Selecting a Sequence of Television Items to Suit a Group
of Viewers. User Model. User-Adapt. Interact., 14(1), 2004.

57. J. Masthoff. Group Recommender Systems: Combining Individual Models. In Recom-
mender Systems Handbook. 2011.

58. J. F. McCarthy. Pocket Restaurant Finder: A situated recommender systems for groups.
In Workshop on Mobile Ad-Hoc Communication, 2002.

59. J. F. McCarthy and T. D. Anagnost. MusicFX: An Arbiter of Group Preferences for Com-
puter Aupported Collaborative Workouts. In ACM Conference on Computer Supported
Cooperative Work, 1998.

60. K. McCarthy, L. McGinty, and B. Smyth. Case-Based Group Recommendation: Com-
promising for Success. In International Conference on Case-Based Reasoning, ICCBR,
2007.

61. K. McCarthy, M. Salamó, L. Coyle, L. McGinty, B. Smyth, and P. Nixon. CATS: A
Synchronous Approach to Collaborative Group Recommendation. In Florida Artificial
Intelligence Research Society Conference, 2006.

62. M. H. Montague and J. A. Aslam. Condorcet Fusion for Improved Retrieval. In Proc. of
the Intl. Conf. on Information and Knowledge Management, 2002.

63. E. Ntoutsi, K. Stefanidis, K. Nørv̊ag, and H.-P. Kriegel. Fast Group Recommendations
by Applying User Clustering. In Proc. of the Intl. Conf. on Conceptual Modeling (ER),
2012.

64. M. O’Connor, D. Cosley, J. A. Konstan, and J. Riedl. PolyLens: A recommender system
for groups of user. In European Conference on Computer Supported Cooperative Work,
ECSCW, 2001.

65. D. P, P. M. Deshpande, D. Majumdar, and R. Krishnapuram. Efficient skyline retrieval
with arbitrary similarity measures. In Proc. of the Intl. Conf. on Extending Database
Technology (EDBT), 2009.

66. D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive skyline computation in database
systems. ACM Transactions on Database Systems (TODS), 30(1), 2005.

67. M.-H. Park, H.-S. Park, and S.-B. Cho. Restaurant Recommendation for Group of Peo-
ple in Mobile Environments Using Probabilistic Multi-criteria Decision Making. In Asia
Pacific Conference on Computer Human Interaction, 2008.

68. A. Piliponyte, F. Ricci, and J. Koschwitz. Sequential Music Recommendations for Groups
by Balancing User Satisfaction. In User Modeling, Adaptation, and Personalization, 2013.

69. S. Pizzutilo, B. De Carolis, G. Cozzolongo, and F. Ambruoso. Group Modeling in a
Public Space: Methods, Techniques, Experiences. In International Conference on Applied
Informatics and Communications, 2005.

44 Nikos Bikakis et al.

70. W. H. Riker. Liberalism Against Populism. Waveland Press Inc, 1988.
71. S. B. Roy, S. Amer-Yahia, A. Chawla, G. Das, and C. Yu. Space efficiency in group

recommendation. VLDB J., 19(6), 2010.
72. D. Sacharidis, S. Papadopoulos, and D. Papadias. Topologically Sorted Skylines for Par-

tially Ordered Domains. In Proc. of the IEEE Intl. Conf. on Data Engineering (ICDE),
2009.

73. A. D. Sarma, A. Lall, D. Nanongkai, and J. Xu. Randomized Multi-pass Streaming Skyline
Algorithms. Proc. of the VLDB Endowment, 2(1), 2009.

74. H. Shang and M. Kitsuregawa. Skyline Operator on Anti-correlated Distributions. Proc.
of the VLDB Endowment, 6(9), 2013.

75. C. Sheng and Y. Tao. Worst-Case I/O-Efficient Skyline Algorithms. ACM Transactions
on Database Systems (TODS), 37(4), 2012.

76. D. W. Sprague, F. Wu, and M. Tory. Music selection using the PartyVote democratic
jukebox. In Working Conference on Advanced Visual Interfaces, 2008.

77. K. Stefanidis, G. Koutrika, and E. Pitoura. A survey on representation, composition and
application of preferences in database systems. ACM Transactions on Database Systems
(TODS), 36(3), 2011.

78. K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient Progressive Skyline Computation. In Proc.
of the Intl. Conf. on Very Large Databases (VLDB), 2001.

79. Y. Tao, L. Ding, X. Lin, and J. Pei. Distance-Based Representative Skyline. In Proc. of
the IEEE Intl. Conf. on Data Engineering (ICDE), 2009.

80. A. D. Taylor. Social choice and the mathematics of manipulation. Cambridge University
Press, 2005.

81. E. Vildjiounaite, V. Kyllönen, T. Hannula, and P. Alahuhta. Unobtrusive dynamic mod-
elling of TV programme preferences in a Finnish household. Multimedia Syst., 15(3),
2009.

82. R. C.-W. Wong, A. W.-C. Fu, J. Pei, Y. S. Ho, T. Wong, and Y. Liu. Efficient sky-
line querying with variable user preferences on nominal attributes. Proc. of the VLDB
Endowment, 1(1), 2008.

83. M. L. Yiu and N. Mamoulis. Efficient Processing of Top-k Dominating Queries on Multi-
Dimensional Data. In Proc. of the Intl. Conf. on Very Large Databases (VLDB), 2007.

84. H. Yu, C. Hsieh, S. Si, and I. S. Dhillon. Parallel matrix factorization for recommender
systems. Knowl. Inf. Syst., 41(3), 2014.

85. Z. Yu, X. Zhou, Y. Hao, and J. Gu. TV Program Recommendation for Multiple Viewers
Based on user Profile Merging. User Model. User-Adapt. Interact., 16(1), 2006.

86. S. Zhang, N. Mamoulis, and D. W. Cheung. Scalable skyline computation using object-
based space partitioning. In Proc. of the ACM SIGMOD Intl. Conf. on Management of
Data (SIGMOD), 2009.

87. S. Zhang, N. Mamoulis, B. Kao, and D. W.-L. Cheung. Efficient Skyline Evaluation over
Partially Ordered Domains. Proc. of the VLDB Endowment, 3(1), 2010.

88. Y. Zhiwen, Z. Xingshe, and Z. Daqing. An adaptive in-vehicle multimedia recommender
for group users. In IEEE Vehicular Technology Conference, 2005.

	1 Introduction
	2 Related Work
	3 Group Categorical Preferences
	4 The Group-Maximal Categorical Objects (GMCO) Problem
	5 The p-Group-Maximal Categorical Objects (p-GMCO) Problem
	6 The Group-Ranking Categorical Objects (GRCO) Problem
	7 Extensions
	8 Experimental Analysis
	9 Conclusions

