
On Enhancing Scalability for Distributed RDF/S Stores

George Tsatsanifos
School of Electrical &

Computer Engineering
National Technical University

of Athens
gtsat@dblab.ece.ntua.gr

Dimitris Sacharidis
Institute for the Management

of Information Systems
R.C. “Athena”

dsachar@imis.athena-
innovation.gr

Timos Sellis
Institute for the Management

of Information Systems
R.C. “Athena”

timos@imis.athena-
innovation.gr

ABSTRACT
This work presents MIDAS-RDF, a distributed P2P RDF/S
repository that is built on top of a distributed multi-dime-
nsional index structure. MIDAS-RDF features fast retrieval
of RDF triples satisfying various pattern queries by trans-
lating them into multi-dimensional range queries, which can
be processed by the underlying index in hops logarithmic
to the number of peers. More importantly, MIDAS-RDF
utilizes a labeling scheme to handle expensive transitive clo-
sure computations efficiently. This allows for distributed
RDFS reasoning in a more scalable way compared to ex-
isting methods, as also demonstrated by our extensive ex-
perimental study. Furthermore, MIDAS-RDF supports a
publish-subscribe model that enables remote peers to selec-
tively subscribe to RDF content.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—
Distributed databases

General Terms
Algorithms

Keywords
RDF/S stores, P2P systems

1. INTRODUCTION
The main incentive for the Semantic Web is to allow the

description of web resources through a formal language, e.g.,
creating metadata according to a formal representation, form-
ing a mesh of information linked up in such a way as to be
easily processable by machines, on a global scale. The Se-
mantic Web community has developed a set of standards for
expressing schemas that enable the creation and exchange
of information among communities of different backgrounds
(e.g., cultural heritage researchers, librarians, audio-visual

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2011, March 22–24, 2011, Uppsala, Sweden.
Copyright 2011 ACM 978-1-4503-0528-0/11/0003 ...$10.00

content producers), and also facilitate the encoding, exchange,
processing and reuse of resource metadata while each user
community is free to specify its own description semantics
in a standardized, interoperable human-readable manner.

The most prominent Semantic Web technology is the Re-
source Description Framework (RDF) data model, accord-
ing to which information is represented as statements about
resources. An RDF statement is represented as the triple
(subject, predicate, object), which signifies that the re-
lationship denoted as predicate holds between the concepts
denoted as subject and object, where predicate and ob-
ject are resources or strings. The power and versatility of
this model lies in its simplicity; e.g., relational and XML
databases can be described by RDF triples. More impor-
tantly, the RDF data model offers the possibility to derive
new knowledge from explicit and background knowledge.

Efficient and scalable management of RDF triples has be-
come an important prerequisite for realizing the Semantic
Web vision. Centralized RDF stores are empowered with
traditional relational tools, e.g., indices, materialized views,
to allow for efficient retrieval of RDF triples, and generation
of new knowledge via reasoning rules. Motivated by the need
to increase flexibility and ultimately allow any community
to freely contribute its knowledge, a trend towards decentra-
lized repositories has recently emerged. However, existing
solutions fail to offer the scalability of their centralized coun-
terparts. One reason is that single dimensional indices are
used in distributed repositories, while RDF triples are inher-
ently multi-dimensional. Moreover, existing algorithms for
distributed reasoning based on transitive relationships must
visit in sequence a large number of peers.

This work proposes a novel distributed RDF store, called
MIDAS-RDF, that alleviates the problems typically encoun-
tered in existing solutions. Specifically, our store is based on
a structured multi-dimensional index [38], which is able to
process point and range queries with low latency, requir-
ing only logarithmic, in the network size, number of hops.
Building upon this functionality, MIDAS-RDF supports pat-
tern queries, conjunctive and disjunctive queries, and tran-
sitivity queries. The most prominent feature of MIDAS-
RDF, however, is that it implements a rigorous inference
model that allows efficient identification and storage of new
knowledge, by incorporating transitivity information using
a labeling scheme. In addition, we propose an RDF publish-
subscribe model that enables peers to selectively subscribe to
RDF content. Unlike most distributed solutions that are re-
stricted to specific topic-based subscriptions, MIDAS-RDF
support general content-based subscriptions.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews relevant literature about distributed RDF
repositories, introduces essential preliminaries, and overviews
the underlying distributed index used in MIDAS-RDF. Sec-
tion 3 describes our storage model and discusses RDF triple
retrieval, and Section 4 presents the distributed inference
algorithm. Section 5 discusses our decentralized publish-
subscribe mechanism. Section 6 contains the experimental
evaluation, while Section 7 concludes this work.

2. BACKGROUND AND RELATED WORK
This section establishes the necessary background, reviews

literature on distributed RDF stores and RDFS reasoning,
and overviews the MIDAS distributed index.

2.1 RDF/S Concepts
The Semantic Web [14] is a group of methods and tech-

nologies to allow machines to understand the meaning — or
“semantics” — of information on the World Wide Web. The
term was coined by World Wide Web Consortium (W3C) [4]
director Tim Berners-Lee, who defines the Semantic Web as
“a web of data that can be processed directly and indirectly
by machines”. These technologies include the Resource De-
scription Framework (RDF), a variety of data interchange
formats (e.g., RDF/XML, N3, Turtle, N-Triples), and nota-
tions such as RDF Schema (RDFS) and the Web Ontology
Language (OWL), all of which are intended to provide a fo-
rmal description of concepts, terms, and relationships within
a given knowledge domain.

The Resource Description Framework (RDF) data model
[24] represents information as statements about resources.
Any concept that can have a Universal Resource Identifier
(URI) can be a resource. RDF consists of a set of named
binary predicates, termed RDF statements, that are repre-
sented as triples. A (subject, predicate, object) triple
implies that the relationship denoted as predicate holds be-
tween the concepts denoted as subject and object, where
predicate and object are resources or strings.

A set of RDF triples defines an RDF graph. The set of
nodes is the set of subjects and objects of the triples. A
(u, α, v) triple defines a directed edge from the subject u to
the object v labelled with the property α. Figure 1a shows
an example RDF graph. The (Picasso, paints, Guernica)

triple is represented as the edge labelled paints from node
Picasso to Guernica. The set of all triples regarding a
property α define the α subgraph of the RDF graph. For
instance, Figure 1b depicts the subgraph for property sc.
In a subgraph, a node u subsumes another v if there is a
path from v to u. In Figure 1b, Artist subsumes Sculptor,
Painter and Cubist.

Artist creates Artifact

SculpturesculptsSculptor

Painter paints Paint

Cubist Picasso Guernica

dom ran

sc

scsp

spsc

sc

sc type
type paints

dom ran

random

(a) RDF graph

Artist Artifact

SculptureSculptor

Painter Paint

Cubist

sc

scsc

sc

sc

(b) The sc subgraph

Figure 1: An RDF graph example

The RDF specification includes a mechanism, termed the
RDF Schema (RDFS), that provides a type system for RDF
models. It offers flexible features for representing domain
knowledge. Abstraction is enabled by multiple class inheri-
tance with the rdfs:subClassOf and rdfs:subPropertyOf

core properties (abbreviated as sc and sp in Figure 1), and
classification of resources rdf:type (abbreviated as type).
Although RDFS does not provide elaborate mechanisms for
defining property restrictions, one can declare simple domain
and range restrictions through properties rdfs:domain and
rdfs:range (abbreviated as dom and ran in Figure 1).

The semantics of RDFS is defined through a set of ax-
iomatic triples and entailment rules [3], which determine
the full set of valid inferences. These inference rules can
be intuitively explained as follows. Each rule has a set of
premises that conjunctively define its body. The premises
represent “extended” RDF statements, where variables can
occupy any of the three possible positions in the triple (that
of a subject, of a predicate, or of an object). The head
of the rule comprises of one or more consequences, each of
which represents in its turn an RDF statement. Applying
the entailment rules to RDF graphs infers new triples, which
can be regarded as a logical consequence of the initial graph.
The newly inferred triples can be denoted as inferred closure
of the source graph. The only way to determine whether a
specific statement can be inferred from an RDF graph is to
check if it is a member of its inferred closure.

In simple rule-based systems, there are two main reason-
ing strategies. Forward-chaining involves applying the in-
ference rules to the known facts to generate new facts. The
rules can then be re-applied to the combination of original
and inferred facts to produce yet more new facts. The pro-
cess is iterative and continues until no new facts can be gen-
erated. The advantage of this approach is that when all in-
ferences have been computed, query answering is extremely
fast. The disadvantages are greater initialization costs (in-
ference computed at load time) and space usage (especially
when the number of inferred facts is very large).

On the other hand, backward-chaining involves starting
with a fact to be proved or a query to be answered. Typi-
cally, the reasoner examines the knowledge base to see if the
fact to be proved is present and if not it examines the rule
set to see which rules could be used to prove it. Hence, a
check is made to see what other supporting facts would need
to be present to fire these rules. The reasoner searches for
proofs of each of these supporting facts in the same way and
iteratively maps out a search tree. The process terminates
when either all of the leaves of the tree have proofs or no new
candidate solutions can be found. Query processing is simi-
lar, but only stops when all search paths have been explored.
The purpose in query answering is to find not just one, but
all possible substitutions in the query expression. The ad-
vantages of this approach are that there are no inferencing
costs at start-up and minimal space requirements. The dis-
advantage is that inference must be done each and every
time a query is answered and for complex search graphs this
can be computationally expensive and slow.

The prevalent language to query RDF data is SPARQL
[2]. Similar to SQL in its syntax, it can be used to ex-
press queries across diverse data sources, whether the data
is stored natively as RDF or viewed as RDF via middleware.
It can also query required and optional graph patterns along
with their conjunctions and disjunctions.

RDF stores, e.g., Hexastore [40], RDFSuite [10], 3store
[27], DLDB [32, 33], KAON [39], are centralized engines,
similar to the Database Management Systems (DBMS), that
allow storing, querying, managing and reasoning on RDF
graphs. The architectures enabling RDF stores include giant
triple table, property tables, [42, 41] vertical partitioning [5,
19] and application specific indices.

2.2 Distributed RDF Storage and Reasoning
Table 1 overviews the features of the most well-known dis-

tributed RDF stores and MIDAS-RDF. Edutella [30] retains
the structure of many independent RDF databases and con-
nects them by an unstructured overlay network consisted of
peers and super-peers. All data remain at their original loca-
tion and queries are routed via flooding. Nonetheless, there
is no guarantee that the queried content will eventually be
retrieved, if at all. Compared to this work, MIDAS-RDF
relies on a structured multi-dimensional distributed index
that is known to support efficiently range search.

Crespo and Molina argue [20] that a classification hierar-
chy, resembling an ontology, should serve as the basis of the
network formation. In Semantic Overlay Networks (SONs),
nodes of semantically similar content are clustered together,
establishing connections among them; a node is allowed to
belong to more than one clusters at the same time. Queries
are processed by identifying which SONs are better suited to
answer it. Then, the query is sent to a node in those SONs
to multi-cast it to the remaining members. On the other
hand, MIDAS-RDF does not require a notion of semantic
proximity and features efficient routing mechanisms.

RDFPeers [15] is one of the first efforts for structured
peer-to-peer RDF stores. The key idea is to use a MAAN
overlay [16] to index a triple three times, once based on the
subject, another based on the predicate, and a final based
on the object. There are a few shortcomings in this design.
First, there is a replication factor of three for all triples.
Furthermore, the RDF schema semantics are totally ignored
during query routing. Due to its underlying storage layer,
RDFPeers can in the worst case, e.g., for queries with low
selectivity, require a linear number of hops with respect to
the overlay size. Finally, RDFPeers is susceptible to load
imbalances, as peers responsible for popular and reserved
keywords quickly become overwhelmed. Note that MIDAS-
RDF does not store duplicate triples, has efficient routing
algorithms with logarithmic number of hops in the worst
case, does not suffer from load balances due to popular key-
words, and in addition supports reasoning.

Regarding distributed RDFS reasoning in particular, Fang
et al. [23] propose an iterative forward-chaining procedure,
though they do not address load-balancing issues. Kaoudi et
al. [28] compare the two well-known approaches for RDFS
reasoning, backward- and forward-chaining on top of dis-
tributed hash table based structure overlays, and conclude
that backward-chaining is the most effective. Compared to
this work, MIDAS also considers incremental updates, triple
removals along with all their inferred triples, and prevents
the inference of duplicate triples. Battré et al. [12] present a
paradigm for performing reasoning over locally stored triples
and introduce a policy to address load-balancing issues. On
the other hand, our approach does not require from each
peer to maintain multiple RDF databases for distinct pur-
poses. Marvin [31] constitutes a parallel and distributed
platform for processing large amounts of RDF data, on a

network of loosely coupled peers. Also, this work presents
an iterative procedure for computing the deductive closure
of large datasets. Serafini and Tamilin propose in [36] a
system that relies on manually created ontology mappings.

A different concept is presented in [35] that distributes
the reasoning rules instead of the data, so that each node
is responsible for performing a specific part of the reasoning
process. However, this scheme is liable to imbalances and
does not scale well. Piazza [26] relies on the mappings estab-
lished between the individual peer schemes to route queries
on semantically related peers, rather than on a distributed
index of graph fragments. GridVine [7] realizes semantic
overlays by separating a logical layer from a physical, ap-
plying the principle of data independence. The logical layer
has operations to support semantic interoperability includ-
ing attribute based search, schema inheritance, schema man-
agement and schema mapping. It also supports a schema
reconciliation technique, known as semantic gossiping, for
semantic interoperability in decentralized settings [6].

2.3 Labeling Schemes
In the following, we provide a succinct overview of labeling

schemes for the Semantic Web; a detailed review can be
found at [18] and [17]. These techniques can be divided into
two categories, interval-based and prefix-based.

Agrawal et al. [9] propose an scheme that assigns inter-
vals to nodes of a graph, so that an ancestry relationship
between two nodes is checked by interval inclusion. First,
spanning tree T is determined. A node u in T is labeled
with [minpost(u), post(u)], where post(u) is the order of u
in a postorder traversal of T , and minpost(u) is the lowest
post among u’s descendants. Finally, all nodes of the graph
are examined in reverse topological order, and for each edge
(u, v) all intervals associated with v are propagated to u.
Based on this scheme, a node v is an ancestor of u, if all
intervals of u are included in those of v. Note that to avoid
frequent node relabeling and support incremental updates,
gaps are typically left in the generated intervals.

Other interval schemes exhibit similar properties. In [21],
[22], a node u in T is labeled with [pre(u), post(u)], where
post(u) is the order of u in a preorder traversal of T . Sim-
ilarly, Tsakalidis [37] shows that a node v is an ancestor to
u iff pre(v) ≤ pre(u) ≤ post(v), which leads to a labeling
scheme with labels of size 2 logn. Peleg [34] proposes an
O(logn) labeling scheme that given nodes u and v one can
determine the lowest common ancestor of u and v.

Prefix-based schemes, such as [29], [11], [8], apply for
trees. Consider an alphabet Σ = {σ1, · · · , σM}. Node la-
bels can be defined recursively, as follows. Consider a node
u with label id(u) ∈ Σ∗. Assuming an order on u’s chil-
dren, let node v be the k-th child of u. We have that
label(v) = label(u)σk. One of the advantages of this ap-
proach is its ability to handle incremental updates efficiently.
As long as the order among descendants is not important,
one can always add a new child as the last, avoiding any
relabeling. Note that to handle the general case of graphs,
a child is allowed to have multiple labels, one per parent.

Checking whether a node v is an ancestor of u is equivalent
to checking if label(v) is a prefix of label(u). Furthermore,
given two nodes u and w, their nearest common ancestor is
the node labeled with their longest common prefix, which
can be easily computed inO(min{‖label(u)‖, ‖label(w)‖}),
where ‖label(u)‖ denotes the length of u’s identifier.

Storage Layer Multi-Attribute Load-Balancing Reasoning

Edutella [30] unstructured N/A No No
SONs [20] hierarchical N/A No No

RDFPeers [15] MAAN No No No
Battre et al. [12] Pastry No Yes FC
Kaoudi et al. [28] Pastry No No BC

MARVIN [31] Chord No No FC
Piazza [26] unstructured N/A No Yes

GridVine [7] P-Grid No Yes Yes
MIDAS-RDF MIDAS Yes Yes FC

Table 1: Characteristics of different distributed RDF repositories.

2.4 The MIDAS Overlay
We present a brief overview of the MIDAS distributed

multi-dimensional index [38], which forms the basis for out
distributed RDF store. MIDAS is a distributed version of
the k-d tree [13]. The k-d tree is a binary tree, where each
node corresponds to an axis parallel rectangle; the root rep-
resents the entire space. Each internal node has always two
children whose rectangles are obtained by splitting the par-
ent’s rectangle in two along some dimension. Each node is
assigned a binary identifier corresponding to its path from
the root, defined recursively. The root has the empty id ∅;
the left (resp. right) child of an internal node has the id of
its parent augmented with 0 (resp. 1). Figure 2 depicts a
k-d tree of seven nodes with three splits and their ids. Due
to the hierarchical splits, the rectangles of the leaf nodes
in a k-d tree, shown in green, constitute a non-overlapping
partition of the entire space.

00

010
011

1

Figure 2: An example of a two-dimensional k-d tree.

A peer in MIDAS corresponds to a leaf of the k-d tree,
and stores/indexes all tuples that reside in the leaf’s rect-
angle. Peer joins and departures are handled by appropri-
ately splitting and merging k-d tree nodes. Due to its rout-
ing mechanism and the locality preserving property of the
underlying k-d tree, MIDAS can efficiently support multi-
dimensional point and range queries. A point in the space
(more accurately, the peer responsible for that point) can be
retrieved in logarithmic number of hops, in the worst case.
To process range queries, MIDAS is able to identify in par-
allel all peers whose rectangle overlaps with the given range.
As a result, independently of the size of the range, MIDAS
requires logarithmic number of hops in the worst case.

3. THE MIDAS-RDF DISTRIBUTED STORE
Section 3.1 describes how triples are stored and indexed,

while Section 3.2 explains query evaluation in MIDAS-RDF.

3.1 Storage Model
The MIDAS-RDF system stores RDF triples and transi-

tive information using the MIDAS distributed index. An
RDF triple (u, α, v) is represented as a four dimensional key
〈u, α, v, id(v)〉, where id(v) encodes transitive information
regarding object v in the subgraph of predicate α, which
corresponds to the RDF graph associated with the triples
with predicate α. We also assume a lexicographic order-
ing for the subject, predicate and object dimensions, and the
natural ordering for object subgraph identifiers.

Consider a MIDAS-RDF key 〈u, α, v, id(v)〉. The sub-
graph identifier of the object v, id(v), can be set according
to one of the schemes described in Section 2.3. When the
interval-based scheme of [9] is used, id(v) is post(v), that
is, v’s order in a postorder traversal of a spanning tree of
the α subgraph. On the other hand, when the prefix-based
scheme of [29] is used, id(v) corresponds to the prefix label
label(v) in a spanning tree of the α subgraph that includes
the (u, v) edge.

Note that, when the interval-based scheme is used, post(v)
alone cannot encode the transitivity in the α subgraph. For
this reason, with each 〈u, α, v, post(v)〉 key, MIDAS-RDF
associates a composite value that consists of all intervals
associated with node v in the α subgraph. Therefore, in
this case, a tuple in MIDAS-RDF has five dimensions, sub-
ject, predicate, object, object subgraph identifier and inter-
vals. However, only the first four comprise the key indexed
by MIDAS-RDF.

Figure 3 illustrates an example subgraph of some property
that contains six nodes denoted symbols u through z; we as-
sume that other nodes below x, y, z exist, but are not shown.
For the interval-based scheme, the spanning tree contains all
edges except the one drawn with dotter line. For easy refer-
ence, the node symbols also correspond to the identifiers ac-
cording to the interval-based scheme, e.g., post(u) = u. The
intervals associated with each node are shown in red. Ob-
serve that node w has two intervals, one from the spanning
tree edge [r, w], and another [q, y], propagated from node
y. The identifiers according to the prefix-based scheme are
depicted on the edges and are shown in blue. Notice that
node y has two prefix labels, 01 corresponding to the (v, y)
edge, and 10 corresponding to the (w, y) edge.

Table 2 shows the attribute values of the tuples stored
in MIDAS-RDF peers according to both labeling schemes.
In this example, the predicate dimension is omitted since
its common among all triples. In the prefix-based scheme,
columns 1, 2 and 3 constitute the tuple keys, whereas in the
interval-based scheme, columns 1, 2 and 4 constitute the
tuple keys, and column 5 represents the value.

0 1

00 01 10 11

u

v w

x y z[p,x] [q,y] [r,z]

[p,v] [r,w],[q,y]

[p,u]

Figure 3: Identifiers for the two labeling schemes.

Subject Object Label Post Intervals

u v 0 v [p, v]
u w 1 w [r, w], [q, y]
v x 00 x [p, x]
v y 01 y [q, y]
w y 10 y [q, y]
w z 11 z [r, z]

Table 2: Triples stored as tuples for both labeling schemes.

3.2 RDF Queries
MIDAS-RDF straightforwardly supports RDF triple pat-

tern queries. Consider the query types shown in Table 3.
The notation ?s (and ?p, ?o) is borrowed from SPARQL
[2], and denotes that variable ?s corresponds to possibly
many subjects satisfying the pattern. Query type Q1 is
evaluated in MIDAS-RDF as a point query requiring log-
arithmic, in the number of peers, hops. All other pat-
tern queries, are evaluated as range queries in MIDAS-RDF,
where an ?s, ?p, or ?o expression is translated as the range
of the entire domain of subjects, predicates, or objects, re-
spectively. For example, consider the RDF graph depicted
in Figure 1a. The Q2 type query SELECT ?paint WHERE

{Picasso paints ?paint} returns all paintings of Picasso.
Note that a Q8 type query essentially retrieves all RDF
triples. Due to the MIDAS overlay, such queries require
only logarithmic hops.

Name Subject Predicate Object

Q1 s p o
Q2 s p ?o
Q3 s ?p o
Q4 s ?p ?o
Q5 ?s p o
Q6 ?s p ?o
Q7 ?s ?p o
Q8 ?s ?p ?o

Table 3: Atomic triple pattern queries.

Disjunctive range queries can be resolved by issuing one
query for each contiguous range and then computing the
union of the results. Such a mechanism can be efficiently im-
plemented by issuing simultaneously the atomic queries that
constitute the disjunction. Conjunctive queries, such as SE-
LECT ?artifact WHERE {{?x type Sculptor} {?x type

Painter} {?x creates ?artifact}} returns the artifacts
that were created by an artist that was a painter and a sculp-
tor, e.g., Michelangelo’s David. A simple way to support
conjunctive queries is to invoke first the atomic query that
constitutes the conjunction with the greater selectivity (as-

suming that such information exists, e.g., via histograms).
Then, the result-set can be filtered appropriately in the peer
that issued the request.

An important class of queries is those concerning transi-
tive properties. For example, consider the sc subgraph of
Figure 1b. A query for the concepts that subsume Cubist

would retrieve Painter and Artist. Efficient processing of
transitivity queries requires a labeling scheme. Posed such
a query, MIDAS-RDF initially retrieves v’s object subgraph
identifier id(v), if not known. Further, if the interval-based
scheme is used, it also retrieves the labels associated with v.
Based on this information it formulates a range query.

In the case of the prefix-based scheme, the start of the
range is id(v). The end of the range is open and is the id of
v’s next sibling if it exists; otherwise, it is the id of the next
sibling of v’s parent or of v’s grandparent, and so on. For
example, the nodes (concepts) that subsume v in Figure 3
have ids in the range [0, 1); these are nodes x and y.

In the case of the interval-based scheme, a range query
is issued for its interval associated with v. For example,
the nodes that subsume v in Figure 3 have ids that belong
in the range [p, v]. Note that, independently of the label-
ing scheme, transitivity queries are processed in logarithmic
number of hops, as they are transformed into range queries.

4. RDFS REASONING IN MIDAS-RDF
Section 4.1 outlines the basic principles of the MIDAS-

RDF inference model. Then, Section 4.2 details the imple-
mentations of RDFS entailment rules.

4.1 Inference Model
The RDF semantic document [3] describes how RDFS en-

tailment can be seen as a set of rules which generate new
RDF triples from existing ones. In this work, we focus on
a subset of these rules, including the extensional entailment
rules, depicted in Table 4, which contains the most computa-
tionally intensive ones. Properties sp and sc are shorthands
for subPropertyOf and subClassOf, respectively.

Rule Precondition Generated Triple

rdfs2 (α, domain, x), (u, α, v) (u, type, x)
rdfs3 (α, range, x), (u, α, v) (v, type, x)
rdfs5 (α, sp, β), (β, sp, γ) (α, sp, γ)
rdfs7 (α, sp, β), (u, α, v) (u, β, v)
rdfs9 (u, sc, v), (w, type, u) (w, type, v)
rdfs11 (u, sc, v), (v, sc, w) (u, sc, w)
ext1 (α, domain, u), (u, sc, v) (α, domain, v)
ext2 (α, range, u), (u, sc, v) (α, range, v)
ext3 (α, domain, u), (β, sp, α) (β, domain, u)
ext4 (α, range, u), (β, sp, α) (β, range, u)

Table 4: RDFS entailment rules.

Unlike other approaches, MIDAS-RDF does not require
ad-hoc splitting of the inference procedure in independent
subparts. Contrary, peers autonomously partition the prob-
lem, as each operates on some subproblem to find partial
solutions that are quickly made available to anyone. More
precisely, MIDAS-RDF follows a forward chaining inference
model. Each time a peer, i.e., a local store, receives a triple
for storage, it generates all inferred triples and inserts them
in MIDAS-RDF using the underlying network infrastruc-

ture. Naturally, the generated triples for some of the rules
may trigger other rules to be executed.

In order to avoid creating duplicates, we adopt the policy
that our methods are executed only once from one of the two
peers containing the parts to be considered for entailment.
Nevertheless, that part is selected to optimize specific fac-
tors that affect performance and scalability. Therefore, our
design choices minimize the amount of exchanged messages
and as a result the consumed bandwidth, which is arguably
the most costly resource in a distributed environment.

Most importantly, our scheme enhances performance by
utilizing a labeling scheme. For example, without such a
scheme, the deductive closure of entailment rule rdfs11 on a
subClassOf subgraph of depth K, would require a sequence
of at least K operations that cost O(logn) hops each. On
the other hand, the labeling scheme, can process the de-
ductive closure in a single operation of O(logn) cost that
applies the rule to all qualifying nodes of the sub-graph.
These nodes are efficiently retrieved by issuing an appropri-
ate range query, as described in Section 3.2. To illustrate
this, assume the RDF graph of Figure 1a and consider rule
rdfs9. In MIDAS-RDF, a peer can generate triples (Pi-

casso, type, Painter) and (Picasso, type, Artist) in
a single step. As a result, the query SELECT ?x WHERE {?x

type Artist} would also return the name of Picasso, which
otherwise would not be part of the answer.

4.2 Implementation Details
We present the implementation of the rules depicted in

Table 4, and also discuss the case of triple updates.

4.2.1 Applying rules rdfs2, rdfs3
Algorithm 1 produces new knowledge using entailment

rules rdfs2 and rdfs3. This method is called when a triple
of the form (α, domain, u) or (α, range, v) is locally inserted.
Such a triple must be associated with all triples of predicate
α retrieved from remote peers by invoking a range query, so
as to generate the triples dictated by the two rules.

The example illustrated in Table 5 concerns rule rdfs2 and
can be described by the following steps:

1. Peer p2 examines local triple (u, α, v) and invokes a
range query of the form (α, domain, ?X) to retrieve
(α, domain, x) from p1.

2. Peer p2 processes the returned tuple using rule rdfs2
and generates triple (u, type, x).

3. Peer p2 stores the generated tuples in the overlay us-
ing the network infrastructure. The peers that are
responsible for the newly inserted triples will invoke
Algorithm 5 to apply rule rdfs9.

Figure 5 also shows that an identical approach for rule
rdfs3 applies. Notice that Algorithm 5 handles triples that
were just inserted in a peer. In order to prevent the cre-
ation of duplicates, we produce new triples when examin-
ing a predetermined part (for performance reasons) of the
two required to apply an entailment rule. However, as new
triples are inferred and inserted there is also the need to im-
plement methods for handling entailment rules for the other
part to be considered for entailment. As this is the case for
Algorithm 5 and entailment rule rdfs9, we suggest very sim-
ilar implementations with limited changes for the rules that
are not presented both ways, such as rdfs7, ext1 and ext2.

In many ways both implementations are equivalent and our
selections were made towards the more efficient and elegant.

Peer Local Store Generated Triples Rule

p1 (α, domain, x)
p2 (u, α, v) (u, type, x), (v, type, z) rdfs2,3
p3 (α, range, z)

Table 5: Inference example for rdfs2 and rdfs3.

Algorithm 1 deduceRDFS2/3a: Inputs an RDF triple in
the form (u, α, v), searches for associated triples by rules
rdfs2 and rdfs3 and generates new triples to be stored.

1: /* Associated rule: RDFS2 */
2: p.rangeRDFquery (β, domain, ?X)
3: for all x in X do
4: p.insert (u, type, x)
5: end for
6:
7: /* Associated rule: RDFS3 */
8: p.rangeRDFquery (β, range, ?Y)
9: for all y in Y do

10: p.insert (v, type, y)
11: end for

Algorithm 2 deduceRDFS2b: Triggered upon an insertion
of an RDF triple of the form (α, domain, u), searches for
associated triples by rule rdfs2 and generates new triples to
be stored.

1: p.rangeRDFquery (?X,α, ?Y)
2: for all x in X do
3: p.insert (x, type, u)
4: end for

4.2.2 Applying rules rdfs5, rdfs7
Algorithms 3 and 4 justify the design choice of utilizing a

labeling scheme in MIDAS-RDF, as they reduce the number
of hops required from O(K logn) to O(logn). The example
of Algorithm 3 depicted in Table 6 can be described by the
following steps:

1. Peer p1 examines (α, subPropertyOf, β) and acquires
the local labels of the triples that correspond to the
nodes that subsume β in the subPropertyOf sub-graph.

2. Peer p1 retrieves all the triples that correspond to the
obtained labels in O(logn) hops, from peers p2 and p3
triples (β, subPropertyOf, ζ), (ζ, subPropertyOf, ξ).

3. Peer p1 stores the generated tuples, by entailment rule
rdfs5, (α, subPropertyOf, ζ) and (α, subPropertyOf, ξ)
in the overlay.

4. Likewise, peer p2 checks triple (β, subPropertyOf, ζ)
to retrieve (ζ, subPropertyOf, ξ) from p3, and when
rule rdfs5 is applied it generates (β, subPropertyOf, ξ)
to store it in the overlay.

5. Peer p3 examines (ζ, subPropertyOf, ξ) only to find
out that there are no nodes that subsume ξ.

6. Peer p2 acquires (u, α, v) (Alg. 3) and applies rule
rdfs7 with local labels of the nodes that subsume ζ.

7. Then, peer p2, after invoking a range query for all rel-
evant labels, retrieves (ζ, subPropertyOf, ξ) from p3.

8. When rule rdfs7 is applied, peer p2 generates triples
(u, ζ, v), (u, ξ, v) and stores them in the overlay.

9. The peers that are responsible for the newly inserted
triples from peer p2 will invoke Algorithm 1 for han-
dling them according to etailment rules rdfs2 and rdfs3.

Peer Local Store Generated Triples Rule

p1 (α, sp, β) (α, sp, ζ), (α, sp, ξ) rdfs5
p2 (β, sp, ζ) (β, sp, ξ), (u, ζ, v), (u, ξ, v) rdfs5,7
p3 (ζ, sp, ξ)
p4 (u, β, v)

Table 6: Inference example for rdfs5 and rdfs7.

Instead of chasing pointers and issuing sequential queries,
peer p1 retrieves the subgraph with a simple range query
based on a labeling scheme. In particular, peer p4 would
have to invoke 4 distinct queries in order to generate all
possible triples regarding entailment rule rdfs7 for its con-
tent. Most importantly, peer p4 is in position of completing
the closure of its statements without being aware of other
peers’ progress, in our case p1, p2, p3, or waiting for their
intermediate results.

4.2.3 Applying rules rdfs11, rdfs9
The example of Algorithm 4 shown in Table 7 is described

in the following steps:

1. Peer p1 examines (u, subClassOf, v) and checks the la-
bels of the nodes that subsume v.

2. Peer p1 retrieves triples, (v, subClassOf, w) from p2
and (w, subClassOf, y) from p3.

3. Peer p1 stores the generated tuples (u, subClassOf, w)
and (u, subClassOf, y) in the overlay.

4. When peer p2 examines (v, subClassOf, w), it retrieves
from p3 triple (w, subClassOf, y).

5. Peer p2 stores the generated tuple (v, subClassOf, y)
in the overlay.

6. Peer p3 examines (w, subClassOf, y) only to find out
that there are no nodes that subsume y. It also issues a
range query for (?X, type, w) and retrieves (x, type, w)
from p4.

7. Peer p3 applies rule rdfs9 and generates (x, type, y)
that stores in the overlay.

Peer Local Store Generated Triples Rule

p1 (u, sc, v) (u, sc, w), (u, sc, y) rdfs11
p2 (v, sc, w) (v, sc, y) rdfs11
p3 (w, sc, y) (x, type, y) rdfs9
p4 (x, type, w)

Table 7: Inference example for rdfs11 and rdfs9.

4.2.4 Applying rules ext1 and ext2
For the implementation of extentional entailment rules

ext1 and ext2, we follow an approach similar to the one
adopted for rdfs9. The example shown in Table 8 is de-
scribed as follows:

1. Peer p2 checks (u, subClassOf, v) and to apply ext1
retrieves the triples that correspond to labels of the
nodes that subsume v, in our case (v, subClassOf, w).

2. When entailment rule ext1 is applied for each of the re-
turned triples (Alg. 4), p2 generates and stores triples
(α, domain, v) and (α, domain, w), after retrieving from
p1 (α, domain, u) with a range query.

3. The peers that are responsible for the newly inserted
triples will invoke Algorithm 2 for handling rdfs2.

4. Likewise, p3 applies ext2 to (β, range, v) that retrieves
after O(logn) hops from p4, to produce (β, range, w).

Peer Local Store Generated Triples Rule

p1 (α, domain, u)
p2 (u, sc, v) (α, domain, v), (α, domain, w) ext1
p3 (v, sc, w) (β, range, w) ext2
p4 (β, range, v)

Table 8: Inference example for ext1 and ext2.

4.2.5 Applying rules ext3 and ext4
Entailment rules ext3 and ext4 require a different ap-

proach. All previously described methods resolve a tran-
sitive relation whose results were combined with a fixed
statement. Here, we compute the transitive closure for each
statement we examine and we combine each element of the
result with associated remote triples that ext3 and ext4 re-
quire. Next, we provide an intuition of the principle used in
Algorithm 3 in the example of Table 9:

1. Peer p3 examines (ζ, subPropertyOf, β) and uses local
information for all labels of the nodes that subsume ζ
in the subPropertyOf sub-graph.

2. Peer p3 based on the local labeling information in-
vokes the appropriate range query to retrieve state-
ment (β, subPropertyOf, α) from peer p2.

3. Peer p3, for each subsuming node α, retrieves all triples
of the form (α, domain, u), in our case from peer p1 and
(α, range, v) from peer p4.

4. When peer p3 applies ext3 generates (ζ, domain, u) that
stores in the overlay. Likewise, peer p3 generates triple
(ζ, range, v) from ext4.

5. The peers that are responsible for the newly inserted
triples will invoke Algorithm 2 for handling rules rdfs2
and rdfs3 for (ζ, domain, u) and (ζ, range, v).

6. An identical procedure is followed by peer p2 to pro-
duce (β, domain, u) and (β, range, v) for ext3 and ext4.

Peer Local Store Generated Triples Rule

p1 (α, domain, u)
p2 (β, sp, α) (β, domain, u), (β, range, v) ext3,4
p3 (ζ, sp, β) (ζ, domain, u), (ζ, range, v) ext3,4
p4 (α, range, v)

Table 9: Inference example for ext3 and ext4.

4.2.6 Incremental updates
For a data-driven forward chaining based scheme, an up-

date of triples naturally triggers an update of the inferred

Algorithm 3 deduceRDFS5/7/EXT3/4: Inputs an RDF
triple in the form (β, sp, α), searches for associated triples
by rules ext3, ext4 and generates new triples to be stored.

1: Λ = p.getTriplesThatSubsume (α)
2: for all (s, p, o) in Λ do
3: /* Associated rule: RDFS5 */
4: p.insert (β, subPropertyOf, o)
5:
6: /* Associated rule: RDFS7 */
7: p.rangeRDFquery (?U, β, ?V)
8: for all (u, v) in (U, V) do
9: p.insert (u, o, v)

10: end for
11:
12: /* Associated rule: EXT3 */
13: p.rangeRDFquery (o, domain, ?X)
14: for all x in X do
15: p.insert (β, domain, x)
16: end for
17:
18: /* Associated rule: EXT4 */
19: p.rangeRDFquery (o, range, ?Y)
20: for all y in Y do
21: p.insert (β, range, y)
22: end for
23: end for

tuples as well. In the process of reverting these changes we
need to make sure that all the triples that we remove have
been inferred with one of the RDFS entailment rules. Since
there is no notion of data provenance, we follow the reverse
procedure of our inference methods with the following ad-
ditional consideration. Before removing any triple, we must
make sure that no other triple exists that when combined
under any of RDFS entailment rule would yield the candi-
date triple. This check can be supported at the cost of some
additional steps and computation.

The example of Algorithm 6 in Table 10 applies to dele-
tions of triples of the form (α, subPropertyOf, β) or (u, α, v)
from peers p1, p2, which raises the question of removing the
(u, β, v) inferred triple produced by rdfs7. The problem is
that the very same triple is inferred by peer p4 when apply-
ing rdfs7 to its content. Hence, as more than one combi-
nations of rules and triples may lead to the same inferred
rules, MIDAS-RDF must examine whether there are more
ways of producing them. If this is the case, we proceed to the
next inferred triple. For example, in Table 10 when (u, α, v)
is deleted and (u, β, v) is examined we simultaneously is-
sue the appropriate requests that would trace the conflict.
First, we have to study all RDFS entailment rules and find
those that produce triples of the form (u, β, v). Then, we
will examine whether there are other triples that lead again
to (u, β, v) for each relevant rule that is found. In our case,
rdfs7 is the unique rule that needs to be checked. This is
done with a range query of the form (u, ?Γ, v) that retrieves
(u, γ, v) from peer p3. Hence, we now need to check whether
node β is an ancestor of γ in the subPropertyOf sub-graph,
a simple task using a labeling scheme. For the prefix-based
scheme, we simply check whether the label of node β is a pre-
fix of the label of node γ. For the interval-based scheme, we
check whether the postorder identifier of node γ is in any of
the intervals of β. Apparently, the cost of this mechanism is

not dramatic if we simultaneously try to resolve the possible
conflicts from all relevant rules, as in a MIDAS disjunctive
query. Thus, combined with this special feature, the afore-
mentioned methods can easily be undone and all inferred
triples be removed by replacing the p.insert() function-
calls, in the algorithms presented earlier, with p.delete()
function-call. Finally, update requests can be considered as
a pair of a deletion of an old triple and a insertion of a triple
with the updated values.

Peer Local Store Generated Triples Rule

p1 (α, sp, β) (u, β, v) rdfs7
p2 (u, α, v)
p3 (u, γ, v)
p4 (γ, sp, β) (u, β, v) rdfs7

Table 10: Inference example for rdfs7.

Algorithm 4 deduceRDFS11/9/EXT1/2: Inputs an RDF
triple in the form (u, sc, v), searches for associated triples
by rule rdfs11 and generates new triples to be stored.

1: Λ = p.getTriplesThatSubsume (v)
2: p.rangeRDFquery (?X, type, u)
3: p.rangeRDFquery (?A, domain, u)
4: p.rangeRDFquery (?B, range, u)
5: for all (s, p, o) in Λ do
6: /* Associated rule: RDFS11 */
7: p.insert (u, sc, o)
8:
9: /* Associated rule: RDFS9 */

10: for all x in X do
11: p.insert (x, type, o)
12: end for
13:
14: /* Associated rule: EXT1 */
15: for all α in A do
16: p.insert (α, domain, o)
17: end for
18:
19: /* Associated rule: EXT2 */
20: for all β in B do
21: p.insert (β, range, o)
22: end for
23: end for

5. A PUBLISH-SUBSCRIBE MODEL
In this section, we present a distributed content-based

publish-subscribe service that addresses needs pertaining to
participants in the community that want to be quickly noti-
fied of specific new content, i.e, they have persistent queries
expressing interest in certain topics that are constantly ser-
viced. Content-based publish-subscribe systems allow more
complex subscriptions by enabling restrictions on the event
content. Most importantly, multiple predicates upon the
subscription may be defined and only the events that fulfill
the requirements are notified to the subscriber.

Our scheme constitutes a middleware for scalable dissem-
ination of data events to subscribers dispersed across the
network. In this context, an area of interest is described by
a hyper-rectangle, and withal, a range along each dimension

Algorithm 5 deduceRDFS9b: Changes triggered by an in-
sertion of a triple of the form (x, type, u) regarding rule
rdfs9.

1: p.rangeRDFquery (u, subClassOf, ?V)
2: for all v in V do
3: [`, h] = p.getLabel (u, subClassOf, v)
4: Λ = p.rangeLabelQuery (`, h)
5: for all (s, p, o) in Λ do
6: p.insert (x, type, o)
7: end for
8: end for

Algorithm 6 deleteRDFS7: Changes triggered by a dele-
tion of a triple of the form (α, subProperty, β) regarding
rule rdfs7.

1: Λ = p.getTriplesThatSubsume (β)
2: for all (s, p, o) in Λ do
3: /* Associated rule: RDFS7 */
4: p.rangeRDFquery (?Γ, subPropertyOf, β)
5: p.rangeRDFquery (?U,α, ?V)
6: for all (u, v) in (U, V) do
7: if @γ ∈ Γ, γ 6= α : (u, γ, v) ∈ KB then
8: p.delete (u, o, v)
9: end if

10: end for
11: end for

is defined, to identify triples limited to a specific subject.
Dimensions that are of no particular interest, are naturally
rendered obsolete by declaring their range of domain values
equal to the domain space of that particular dimension.

If a subscription needs to specify multiple predicates over
the same attribute (for example conjunctive and disjunctive
clauses), we can model such a subscription as a combination
of multiple subscriptions, each of which specifies a contin-
uous range over that attribute. Therefore, we treat a sub-
scription request similar to a multi-dimensional range query.
Peers may subscribe to a specified area whose responsibility
might be distributed among several peers.

A subscriber does not know in advance what peers are
responsible for the area it is interested in. Moreover, each
peer maintains a local spatial index (e.g., an R-tree [25])
with all the subscriptions (hyper-rectangles) that overlap its
area of responsibility. To elaborate, as a request is being
forwarded recursively to more relevant subtrees of the dis-
tributed index, it becomes fragmented by the corresponding
sub-regions, and withal, the subscription (hyper-rectangle)
is stored in the local spatial indices of the overlapping peers.
Henceforth, subscribers will be notified about the changes
their areas of interest undergo. Consequently, our approach
requires an additional hop for insertions/updates to inform
the subscribers, as they instantly become aware of changes
that take place (e.g., newly inserted tuples) in those specific
areas. Otherwise, a peer would have to periodically invoke
a request of a certain type, which would generate unneces-
sary load. Note that multiple notifications are prevented as
duplicate events can be easily detected in the local index.

6. EXPERIMENTAL EVALUATION
Section 6.1 describes the experimental setting and Sec-

tion 6.2 presents the results of our extensive evaluation.

6.1 Setting
We evaluate performance according to several metrics ap-

pearing. We measure query performance by latency, which
is the maximum distance (in terms of hops) from the initial
peer to any peer reached during query processing. Another
important metric in distributed systems is network conges-
tion, defined as the average number of queries processed at
any node, when n uniformly random queries are issued. This
actually resembles the average traffic a peers accepts when
n queries are issued in the overlay by random peers. To
quantify how fast an answer is retrieved, we use two met-
rics. Recall is the ratio between the number of accessed
relevant peers to the number of peers that are relevant to
the query for each simulation cycle. Responsiveness is the
ratio between the number of retrieved qualifying tuples to
the number of tuples are relevant.

Our experiments simulate a dynamic environment. They
consist of a growing and a shrinking stage. Therefore, we are
given the opportunity to study the course of those metrics,
as overlay adapts dynamically to changes of the topology.
In each step of the growing stage, a new peer joins the over-
lay network, whereas during the shrinking stage a peer is
removed, selected at random with equal probability. In each
figure, we depict the impact of both stages. All simulations
initiate an overlay of 1K peers growing up to 100K peers,
followed by the reverse procedure.

To evaluate transitivity computation and study how dif-
ferent techniques scale, we used synthetic RDF graphs of
variable depth (up to 16). In these settings, we compare our
labeling scheme based paradigm with traditional solutions
based on an iterative forward-chaining procedure. Note that
efficient management of transitive relations is of major sig-
nificance as it is present in the vast majority of the RDFS en-
tailment rules proposed by W3C [3]. The synthetic datasets
consist of 1M triples.

Frequency Relationships (in main relationships)

900,440 publication-has-author (author)
438,531 contained in proceedings (isIncludedIn)
112,303 cites publication
10,639 has-homepage (foaf:homepage)
10,461 has-publisher (dc:publisher)
7,308 has affiliation (foaf:workplaceHomepage)
5,850 in series

Table 11: Statistics summary of the DBLP dataset
(Resource-to-Resource Triples: 3,740,438, Resource-to-
Literal Triples: 7,274,180).

Furthermore, we evaluate range queries with a real dataset
of approximately 11.2M triples. The DBLP dataset [1] is
available in XML and contains a large number of bibli-
ographic descriptions on major computer science journals
and proceedings, more than half a million articles and sev-
eral thousand links to home pages of computer scientists.
For our evaluation, we use an RDF converted dataset from
XML of the Proximity DBLP database, which is based on
the DBLP dataset with additional preparation performed
by the Knowledge Discovery Laboratory, University of Mas-
sachusetts Amherst. Specifically, the data in this dataset
were derived from a snapshot of the bibliography in 2006.

Tables 11 and 12 indicate important characteristics of the
DBLP dataset that prelude our results. In addition, there

5.5

6

6.5

7

7.5

8

8.5

9

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

la
te

n
c
y
 (

h
o
p
s
)

overlay size (peers)

latency of MIDAS-RDF for the 80% of the result-set

rangeXZ,grow
rangeXZ,shrk
rangeX,grow
rangeX,shrk
rangeZ,grow
rangeZ,shrk

102

103

104

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

la
te

n
c
y
 (

h
o
p
s
)

overlay size (peers)

latency of RDFPeers for the 80% of the result-set

rangeXZ,grow
rangeXZ,shrk
rangeX,grow
rangeX,shrk
rangeZ,grow
rangeZ,shrk

Figure 4: Latency of MIDAS-RDF, RDFPeers for rangeXZ, rangeX, rangeZ querysets on the DBLP dataset.

10

20

30

40

50

60

70

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

la
te

n
c
y
 (

h
o
p
s
)

overlay size (peers)

latency for the 80% of the deductive closure

iterative,depth=8,grow
iterative,depth=8,shrk

iterative,depth=4,grow
iterative,depth=4,shrk

iterative,depth=2,grow
iterative,depth=2,shrk
labeling scheme,grow
labeling scheme,shrk

103

104

105

106

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

c
o
n
g
e

s
ti
o
n

overlay size (peers)

congestion - average peer task load

iterative,depth=8,grow
iterative,depth=8,shrk

iterative,depth=4,grow
iterative,depth=4,shrk

iterative,depth=2,grow
iterative,depth=2,shrk
labeling scheme,grow
labeling scheme,shrk

Figure 5: Latency and task-load for the computation of the deductive closure of synthetic graphs of variable depth for labeling
and iterative based schemes.

Frequency Entities (in main classes)

560,792 Person (foaf:Person)
561,895 Articles in Proceedings
340,488 Journal Articles
10,610 Webpages of persons
9,027 Proceedings
2,530 Book Chapters

Table 12: Statistics summary of the DBLP dataset (Re-
sources: 2,395,467, Literals: 3,064,704).

are 2,425,830 triples with <rdf:type> as their property, an-
other 1,708,988 with <http://xmlns.com/foaf/0.1/name>,
just 1,689,330 triples with a <dc:creator> predicate, etc. In
fact, only seven distinct predicates appear in the outlandish
percentage of 72% of our triples. Consequently, considering
the immense arising skew, the hitherto approach of earlier ef-
forts that hash each triple separately by its subject, its pred-
icate and its object is absolutely unjustified. Hence, when

the size of the overlay exceeds the number of keywords used
in a dataset, especially when some of those terms are also
popular, like type and Article, load imbalances have an im-
mense impact on all aspects of performance and scalability.
Therefore, we made some enhancements in the design of one
of our competitors, RDFPeers [15], and benefited its over-
lay infrastructure to support multi-attribute range queries
and not hash triples separately for each of their attributes.
Otherwise, a single peer in RDFPeers would easily be re-
sponsible for at least half the dataset, a critical impediment
to the functional operation of a peer-to-peer system.

We evaluate MIDAS-RDF with various types of queries
that were used in our inference methods. More specifically,
with rangeXZ we denote querysets consisted of range queries
of the form SELECT ?publication ?author WHERE {?pub-

lication <dc:creator> ?person}, where only the predi-
cate has a fixed value as in Algorithm 2. With rangeZ query-
sets of range queries of the form SELECT ?author WHERE

{<http://www.w3.org/TR/xquery> <ex:editor> ?author}

where we want to retrieve triples of a specific subject and

predicate, for example in Algorithm 1. Last, with rangeX
we denote range queries of the form SELECT ?id WHERE {?id

date "2002-01-03"}, to retrieve all possible subjects that
appear with a specific predicate and object (Alg. 4). In
our queryset, the queries were originated from the DBLP
dataset. They are triples selected at random and processed
appropriately. Their querysize and selectivity is not fixed
and is associated with the frequency of the used terms. Our
querysets consist of approximately 40K range queries. Last,
in Figures 4 and 5 we draw the mean values of important
metrics, for the 20 times that we run our experiments.

6.2 Results
In this section we present our results that validate our

analytical claims. Figure 4 presents query performance as-
pects for various types of range search, namely rangeX,
rangeZ and rangeXZ. Latency for MIDAS-RDF is bounded
by O(logn) as expected. In terms of latency, the original
version of RDFPeers performs equally good with our solu-
tion. Nonetheless, both data- and task-load fairness suffered
severely in such a degree that commodity hardware would
find it very difficult to cope with. On the other hand, our
pure multi-dimensional scheme prevents similar phenomena
as it takes load into consideration when assigning a zone to
a new peer, and as a result, no peer is duly loaded. Regard-
ing the altered version of RDFPeers that uses the protocol
of MAAN to index triples, it is obvious that MIDAS-RDF
outperforms it by more than an order of magnitude for all
query types. Clearly, being strongly affected by query se-
lectivity our competitor shows linear behavior as the over-
lay size increases, in contrast to MIDAS’ logarithmic perfor-
mance. More specifically, latency on MAAN is dominated
by the number of peers relevant to the query, due to the
adopted approach to look up for a bound of the range first,
and then sequentially traverse all relevant neighboring peers.
This also becomes apparent for the various types of range
search where performance deteriorates as selectivity dimin-
ishes from rangeX to rangeXZ.

Figure 5 presents query performance aspects for resolving
the transitive closure of a synthetic RDF graph of variable
depth. We compare MIDAS-RDF and its incorporated la-
beling scheme with the traditional iterative approach that
has been widely accepted by similar efforts on the subject
to date. Regarding latency, our approach performs logarith-
mically and clearly outperforms the iterative procedure. In
particular, the usage of labeling schemes ameliorates per-
formance significantly, as it renders obsolete the impact of
graph’s depth parameter. Surprisingly enough, both label-
ing schemes we leverage, prefix and interval scheme, per-
formed equally well with MIDAS.

When it comes to congestion, MIDAS-RDF outperforms
the competition again. Apparently, resolving range queries
is more efficient than the traditional iterative procedure of
chasing pointers, some orders of magnitude analogous to the
depth of the resolved graph. Also, note that this figure cor-
responds to the average peer message load when invoking
n queries for retrieving the whole transitive hierarchy of an
RDF graph that consists of 1M triples and variable depth.

Finally, Figures 6 and 7 illustrate in detail the progress
of the transitive closure computation in MIDAS-RDF with
time for the responsiveness and recall metrics.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

re
s
p
o
n

s
iv

e
n
e
s
s

latency (hops)

responsiveness of the transitive closure computation

10000 peers, grow
40000 peers, grow
70000 peers, grow

100000 peers, grow
70000 peers, shrk
40000 peers, shrk
10000 peers, shrk

Figure 6: Responsiveness for transitivity computation.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

re
c
a
ll

latency (hops)

recall of the transitive closure computation

10000 peers, grow
40000 peers, grow
70000 peers, grow

100000 peers, grow
70000 peers, shrk
40000 peers, shrk
10000 peers, shrk

Figure 7: Recall for transitivity computation.

7. CONCLUSIONS
This paper presented MIDAS-RDF, a novel distributed

RDF repository based on a pure multi-dimensional indexing
scheme for large-scale decentralized networks. MIDAS-RDF
is able to process various pattern queries in hops logarith-
mic to the number of peers. Furthermore, using labeling
schemes, MIDAS-RDF implements a forward-chaining infer-
ence method that outperforms known approaches that rely
on iterative procedures. Last but not least, MIDAS-RDF
supports a publish-subscribe model that enables peers to
selectively subscribe to RDF content.

8. ACKNOWLEDGMENTS
The authors would like to thank Bettina Kemme and the

anonymous referees for their valuable comments and sugges-
tions to improve the quality of this paper.

9. REFERENCES
[1] The dblp data-set. http://dblp.uni-trier.de/xml.

[2] Sparql query language for rdf.
http://www.w3.org/TR/rdf-sparql-query/.

[3] W3c rdfs rules of entailment.
http://www.w3.org/TR/rdf-mt/#rules.

[4] World wide web consortium (w3c).
http://www.w3.org/.

[5] D. J. Abadi, A. Marcus, S. Madden, and K. J.
Hollenbach. Scalable semantic web data management
using vertical partitioning. In VLDB, pages 411–422,
2007.

[6] K. Aberer, P. Cudré-Mauroux, and M. Hauswirth.
The chatty web: emergent semantics through
gossiping. In WWW, pages 197–206, 2003.

[7] K. Aberer, P. Cudré-Mauroux, M. Hauswirth, and
T. V. Pelt. Gridvine: Building internet-scale semantic
overlay networks. In ISWC, pages 107–121, 2004.

[8] S. Abiteboul, S. Alstrup, H. Kaplan, T. Milo, and
T. Rauhe. Compact labeling scheme for ancestor
queries. SIAM J. Comput., 35(6):1295–1309, 2006.

[9] R. Agrawal, A. Borgida, and H. V. Jagadish. Efficient
management of transitive relationships in large data
and knowledge bases. In SIGMOD Conference, pages
253–262, 1989.

[10] S. Alexaki, V. Christophides, G. Karvounarakis,
D. Plexousakis, and K. Tolle. The ics-forth rdfsuite:
Managing voluminous rdf description bases. In
SemWeb, 2001.

[11] S. Alstrup and T. Rauhe. Improved labeling scheme
for ancestor queries. In SODA, pages 947–953, 2002.

[12] D. Battré, F. Heine, A. Höing, and O. Kao. On triple
dissemination, forward-chaining, and load balancing in
dht rdf stores. In DBISP2P, pages 343–354, 2006.

[13] J. L. Bentley. K-d trees for semidynamic point sets. In
Symposium on Computational Geometry, pages
187–197, 1990.

[14] T. Berners-Lee, J. Hendler, and O. Lassila. The
semantic web. The Scientific American, May, 17, 2001.

[15] M. Cai and M. R. Frank. Rdfpeers: a scalable
distributed rdf repository based on a structured
peer-to-peer network. In WWW, pages 650–657, 2004.

[16] M. Cai, M. R. Frank, J. Chen, and P. A. Szekely.
Maan: A multi-attribute addressable network for grid
information services. J. Grid Comput., 2(1):3–14,
2004.

[17] V. Christophides, G. Karvounarakis, D. Plexousakis,
M. Scholl, and S. Tourtounis. Optimizing taxonomic
semantic web queries using labeling schemes. J. Web
Sem., 1(2):207–228, 2004.

[18] V. Christophides, D. Plexousakis, M. Scholl, and
S. Tourtounis. On labeling schemes for the semantic
web. In WWW, pages 544–555, 2003.

[19] G. P. Copeland and S. Khoshafian. A decomposition
storage model. In SIGMOD Conference, pages
268–279, 1985.

[20] A. Crespo and H. Garcia-Molina. Semantic overlay
networks for p2p systems. In AP2PC, pages 1–13,
2004.

[21] P. F. Dietz. Maintaining order in a linked list. In
STOC, pages 122–127, 1982.

[22] P. F. Dietz and D. D. Sleator. Two algorithms for
maintaining order in a list. In STOC, pages 365–372.

[23] Q. Fang, Y. Zhao, G. Yang, and W. Zheng. Scalable
distributed ontology reasoning using dht-based
partitioning. In ASWC, pages 91–105, 2008.

[24] C. Gutiérrez, C. A. Hurtado, and A. O. Mendelzon.
Foundations of semantic web databases. In PODS,
pages 95–106, 2004.

[25] A. Guttman. R-trees: A dynamic index structure for
spatial searching. In SIGMOD Conference, pages
47–57, 1984.

[26] A. Y. Halevy, Z. G. Ives, P. Mork, and I. Tatarinov.
Piazza: data management infrastructure for semantic
web applications. In WWW, pages 556–567, 2003.

[27] S. Harris and N. Gibbins. 3store: Efficient bulk rdf
storage. In PSSS, 2003.

[28] Z. Kaoudi, I. Miliaraki, and M. Koubarakis. Rdfs
reasoning and query answering on top of dhts. In
ISWC, pages 499–516, 2008.

[29] H. Kaplan, T. Milo, and R. Shabo. A comparison of
labeling schemes for ancestor queries. In SODA, pages
954–963, 2002.

[30] W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek,
A. Naeve, M. Nilsson, M. Palmér, and T. Risch.
Edutella: a p2p networking infrastructure based on
rdf. In WWW, pages 604–615, 2002.

[31] E. Oren, S. Kotoulas, G. Anadiotis, R. Siebes, A. ten
Teije, and F. van Harmelen. Marvin: Distributed
reasoning over large-scale semantic web data. J. Web
Sem., 7(4):305–316, 2009.

[32] Z. Pan and J. Heflin. Dldb: Extending relational
databases to support semantic web queries. In PSSS,
2003.

[33] Z. Pan, X. Zhang, and J. Heflin. Dldb2: A scalable
multi-perspective semantic web repository. In Web
Intelligence, pages 489–495, 2008.

[34] D. Peleg. Informative labeling schemes for graphs.
Theor. Comput. Sci., 340(3):577–593, 2005.

[35] A. Schlicht and H. Stuckenschmidt. Distributed
resolution for alc. In Description Logics, 2008.

[36] L. Serafini and A. Tamilin. Drago: Distributed
reasoning architecture for the semantic web. In
ESWC, pages 361–376, 2005.

[37] A. K. Tsakalidis. Maintaining order in a generalized
linked list. Acta Inf., 21:101–112, 1984.

[38] G. Tsatsanifos, D. Sacharidis, and T. Sellis. Midas:
Multi-attribute indexing for distributed architecture
systems.

[39] R. Volz, D. Oberle, S. Staab, and B. Motik. Kaon
server - a semantic web management system. In
WWW (Alternate Paper Tracks), 2003.

[40] C. Weiss, P. Karras, and A. Bernstein. Hexastore:
sextuple indexing for semantic web data management.
PVLDB, 1(1):1008–1019, 2008.

[41] K. Wilkinson, C. Sayers, H. A. Kuno, and
D. Reynolds. Efficient rdf storage and retrieval in
jena2. In SWDB, pages 131–150, 2003.

[42] K. Wilkinson and K. Wilkinson. Jena property table
implementation. In SSWS, 2006.

