
The VLDB Journal manuscript No.
(will be inserted by the editor)

Kyriakos Mouratidis · Dimitris Sacharidis · HweeHwa Pang

Partially Materialized Digest Scheme: An Efficient
Verification Method for Outsourced Databases

Received: date / Accepted: date

Abstract In the outsourced database model, a data ow-
ner publishes her database through a third-party server;
i.e., the server hosts the data and answers user queries
on behalf of the owner. Since the server may not be
trusted, or may be compromised, users need a means to
verify that answers received are both authentic and com-
plete, i.e., that the returned data have not been tampered
with, and that no qualifying results have been omit-
ted. We propose a result verification approach for one-
dimensional queries, called Partially Materialized Digest
scheme (PMD), that applies to both static and dynamic
databases. PMD uses separate indexes for the data and
for their associated verification information, and only
partially materializes the latter. In contrast with previ-
ous work, PMD avoids unnecessary costs when process-
ing queries that do not request verification, achieving the
performance of an ordinary index (e.g., a B+-tree). On
the other hand, when an authenticity and completeness
proof is required, PMD outperforms the existing state-of-
the-art technique by a wide margin, as we demonstrate
analytically and experimentally.

Furthermore, we design two verification methods for
spatial queries. The first, termed Merkle R-tree (MR-
tree), extends the conventional approach of embedding
authentication information into the data index (i.e., an
R-tree). The second, called Partially Materialized KD-
tree (PMKD), follows the PMD paradigm using sepa-
rate data and verification indexes. An empirical evalua-
tion with real data shows that the PMD methodology is
superior to the traditional approach for spatial queries
too.

Kyriakos Mouratidis
Singapore Management University
E-mail: kyriakos@smu.edu.sg

Dimitris Sacharidis
National Technical University of Athens
E-mail: dsachar@dblab.ntua.gr

HweeHwa Pang
Singapore Management University
E-mail: hhpang@smu.edu.sg

1 Introduction

The outsourced database model [13] includes three main
entities: (i) the data owner, (ii) the third-party publisher
(i.e., the server), and (iii) the users. The owner uploads
her data to the server, along with their associated index
structures. The users can then pose queries to the server.
Since the latter may not be trusted, or may be compro-
mised, it is essential to enable verification of the results
by the users. In particular, the server should be able to
guarantee that the returned data are both authentic and
complete. Authenticity implies that the result data tu-
ples indeed exist in the owner’s database, and that they
have not been tampered with in any way. Completeness
requires that no qualifying tuples have been omitted by
the server. We term the above problem authenticity and
completeness (AC) verification in outsourced databases.

The general approach taken requires that the ow-
ner uploads authentication information together with her
data. Posed a query, the server returns, in addition to
the result, pieces of this information in a verification
object (VO). The user may then use the VO to deter-
mine whether the server’s answer is authentic and com-
plete. The performance factors involved in this general
scheme are (i) construction time for the index and the
verification structures, (ii) communication cost to upload
the database to the server, (iii) storage overhead at the
server, (iv) query processing and VO computation time,
(v) communication overhead for sending the results and
the VO to the users, and (vi) computation cost for AC
verification by the users.

Existing methods fall into two categories. The first in-
cludes signature-based techniques, where the owner pro-
duces one signature for every tuple in the database, e.g.,
[26,24]. Approaches of the second category use a Merkle
hash tree (MHT, reviewed in Section 2.1) for VO compu-
tation, e.g., [9,27]. The MHT is embedded into the data
index and the VO is created during query processing.
Recently, [17] advocated the use of MHT-based schemes,
showing that signature-based methods are very costly,

2 Kyriakos Mouratidis et al.

due to the large storage and computation overheads in-
curred by the numerous signatures.

We propose a novel method, called Partially Materi-
alized Digest scheme (PMD), that belongs to the second
category. As opposed to existing approaches, PMD does
not incorporate the MHT into the data index. Instead,
it uses a main index (MI) solely for storing and querying
the data, and a separate digest index (DI) that contains
the MHT-based verification information in a compressed
form. Our decision to decouple DI from MI is motivated
by the following facts.

First, in a real-world scenario not all users require AC
guarantees; e.g., some time-critical applications may fa-
vor a fast response over a verified one. In such situations,
PMD uses directly the MI, achieving the performance of
a standard, non-authenticated index. Second, in case an
AC proof is requested, query processing and VO compu-
tation impose conflicting requirements on the index. For
instance, a high fanout is desirable in order to reduce the
query evaluation cost, but that leads to a large VO [19].
Employing a separate DI provides flexibility in design-
ing its structure and optimizing its performance; we use
a binary MHT (to keep the VO small) and materialize
only a subset of its nodes in order to decrease the DI
size and the I/O cost for VO generation. Based on the
above design principles, PMD significantly outperforms
the current state-of-the-art verification technique [17],
reducing drastically the query response time, the stor-
age overhead and the index construction cost.

In addition to performance advantages, PMD pro-
vides additional flexibilities that are essential to data-
base outsourcing applications. Specifically, in many cases
a database is already outsourced and deployed when the
owner decides to authenticate it. With our technique, the
owner needs only to compute and upload the DI, with-
out having to authenticate and re-upload the entire da-
tabase. Moreover, PMD provides architectural flexibility,
since the MI may be hosted by a server responsible only
for query processing, and the DI by another server that
is dedicated to providing AC guarantees (i.e., producing
the VO).

The basic PMD method is designed for verification
of one-dimensional queries in static databases. The dy-
namic PMD (dPMD) adapts the PMD approach to dy-
namic datasets by using an alternative DI materializa-
tion technique. We analyze the performance of both meth-
ods, and verify experimentally their superiority over ex-
isting approaches for static and dynamic data. As an
additional contribution, we extend our study to higher
dimensions, and design comprehensive methods for veri-
fication in spatial databases. The first, termed Merkle R-
tree (MR-tree), incorporates an MHT into an R-tree [11]
index. The second, called Partially Materialized KD-tree
(PMKD), applies a space partitioning strategy and ex-
tends the PMD concept to spatial queries. We evaluate
the performance of the MR-tree and PMKD on real data,

and demonstrate that the PMD methodology retains its
benefits in the spatial domain.

To summarize, in this paper we propose the PMD
methodology for database verification. Its advantages over
existing methods are as follows:

– PMD achieves significant performance improvements
in terms of query processing, space requirements and
index construction cost over the current state-of-the-
art.

– PMD separates the query processing and the VO
computation tasks. This provides users with the op-
tion to receive a non-authenticated answer, without
any performance degradation due to verification struc-
tures. Additionally, existing databases can be directly
authenticated, without having to be modified and re-
uploaded. Also, query answering and VO generation
can be delegated to different servers.

– PMD applies to static and dynamic databases, and
to one-dimensional and spatial data. In all cases, it
retains its advantages over the conventional approach
of combining the data and verification indexes.

The rest of the paper is organized as follows. Section 2
provides a background on cryptographic primitives and
spatial indexes. Section 3 surveys previous verification
methods. Sections 4 and 5 describe our technique for
static one-dimensional data (PMD), and its adaptation
to dynamic settings (dPMD), respectively. Section 6 pre-
sents the MR-tree and PMKD methods for AC verifica-
tion in spatial databases. Section 7 experimentally eval-
uates our techniques, and Section 8 concludes the paper.

2 Background

In this section, we review some cryptographic essentials,
as well as some basics of spatial access methods.

2.1 Cryptographic Primitives

Collision-resistant hash functions. A hash function
H maps a message m of arbitrary size to a fixed-length
bit vector H(m). The collision-resistance property guar-
antees that it is computationally infeasible to find two
different messages that map into the same hash value.
Additionally, a desirable property is that H(m) is fast
to compute. The most commonly used hash function is
SHA1 [25] with an 160-bit output, which satisfies both
requirements. We refer to H(m) as the hash, hash value
or digest of m.

Public-key encryption. In public-key cryptography, a
message owner creates a pair of private and public keys.
She keeps the private key secret and publishes the public
one. This allows the integrity and ownership of a mes-
sage m to be authenticated as follows. The owner signs
m with her private key. The recipients of m can verify

Partially Materialized Digest Scheme: An Efficient Verification Method for Outsourced Databases 3

the signature using the public key to determine whether
m has been tampered with. The most widely used al-
gorithm for public-key encryption is RSA [29] with a
signature length of 128 bytes.

Merkle hash tree. The Merkle hash tree (MHT) is a
method for authenticating a set of messages (e.g., data
tuples) collectively, without signing each one individu-
ally [20]. It is a binary tree over the digests of the mes-
sages, where each internal node equals the hash of the
concatenation of its two children. The owner signs the
root of the tree with her private key. Given a message
and the sibling hashes to the path in MHT from the
root to the message, one may verify its authenticity by
reconstructing bottom-up the root digest of MHT, and
checking whether it matches the owner’s signature. The
collision-resistance of the hash function guarantees that
an adversary cannot modify/replace any message in a
way that leads to an identical root digest. The MHT
need not be binary, i.e., it can be a multi-way tree. How-
ever, the number of digests required for authentication is
minimized at a fanout of 2. The MHT idea also applies to
arbitrary DAG (directed acyclic graph) structures [19].

2.2 Spatial Indexes

Spatial indexes are used for efficient search among data
in the Euclidean space. We survey two indexes, the R-
tree and the KD-tree, because they are utilized by our
techniques in Section 6. The R-tree and its variants [11,
2] are the most widely used spatial access methods. Fig-
ure 1 shows an R-tree for a dataset containing 23 ob-
jects, assuming a capacity of four entries per node. Ob-
jects that are close in space (e.g., l,m, n, o) are stored
in the same leaf node (N6). Nodes are then recursively
grouped together in a similar fashion up to the top level,
which consists of a single root. Each R-tree node is char-
acterized by the minimum bounding rectangle (MBR)
enclosing all the points in its subtree.

N1
N3 N4

N5a b
c

d

e
f g

h i

j

k

N2N7
N8
N9

p
xr

s
t

u

v
w

N6l
m

n
o

(a) Node MBRs

a b c d i j k
e f g h

N3 N4 N5
R-tree root

N6 N7 N8 N9N1 N2
N1 N2

N3 N5
N4 N6 N7

N8 N9
l m n o

p x r s
t u

v w

(b) R-tree structure

Fig. 1 R-tree example

The KD-tree [3] is a space partitioning index. It is
a binary tree, built top-down as follows. The root cor-
responds to the entire data-space. It is split according

to the first dimension (e.g., an x value) into two halves
(buckets) that contain an equal number of data. Each
of these buckets, in turn, is partitioned into two halves
according to the second dimension (e.g., a y value). The
procedure continues recursively by cycling through split-
ting dimensions in successive tree levels, until each bucket
contains one object only.

3 Related Work

Existing verification methods for outsourced databases
follow two paradigms. The first is signature chaining [26,
24,7]. Assuming that the data are ordered according to
search attribute A, the owner hashes and signs every
triple of consecutive tuples. Posed a range (selection)
query on A, the server returns the qualifying data, along
with (hashes of) the first tuple to the left and the first
tuple to the right of the range. It then includes the cor-
responding signatures in the VO. The user inspects the
result by verifying the signatures that “chain” consecu-
tive tuples. The number of signatures sent (by the server)
and verified (by the user) can be reduced by aggregat-
ing them into a single one [23]. Signature chaining ap-
proaches are shown to be particularly inefficient [17], be-
cause (i) generating the signatures incurs high computa-
tion cost for the owner, (ii) the large size of the signa-
tures leads to excessive storage overhead for the server,
and (iii) verifying multiple signatures (even aggregated
ones) is expensive.

The second paradigm overcomes the above problems
by utilizing an MHT for result verification. The MHT
hashes are faster to compute and more concise than sig-
natures, leading to shorter construction time and smaller
storage overhead. [5,6] extend the MHT idea to verify the
authenticity of XML documents, while [4] to authenti-
cate UDDI registries for publishing information about
web services. [9,10,22] verify range selections over an
ordered list of data tuples. [27] introduces a method
that is suitable for database indexes, combining an MHT
with a multi-way tree. [17] is the most recent work in
this category, proposing two AC verification methods
for one-dimensional queries over disk-resident data; the
Merkle B-tree (MB-tree) and the Embedded Merkle B-
tree (EMB-tree), the latter being the current state-of-
the-art.

The MB-tree is a B+-tree [8] where each internal node
Ni additionally contains a hash for each child. The di-
gest hNi

of Ni is defined over (the concatenation of)
the hashes of its children. hNi is stored in the parent
node of Ni. The root digest is signed by the owner. Fig-
ure 2(a) shows an MB-tree with fanout f = 8 (omitting
nodes irrelevant to our example). Posed a range query,
the server returns, in addition to qualifying objects, two
boundary ones, p− and p+, falling immediately to the
left and to the right of the range. The reported objects
are shown hollow in the leaf level. The VO contains all

4 Kyriakos Mouratidis et al.

left (right) sibling hashes to the path of p− (p+), i.e.,
the VO includes the digests of the solid entries. Upon re-
ceipt of the result, the user calculates the hashes of the
returned (hollow) objects, and combines them with the
solid hashes to derive, initially, the internal hollow hashes
and, eventually, the root digest. If the latter matches the
owner’s signature, the result is complete and authentic,
since (i) all objects between p− and p+ have been re-
turned and are authentic (due to the collision-resistance
of h), and (ii) the interval between the keys of p− and
p+ completely covers the query range.

MB-tree root

Query range

N1 N2
N3 N4 N5
p- p+

(a) MB-tree

N2
Embedded MHT

(b) Emb. MHT

Fig. 2 MB- and EMB-tree example

The second method proposed in [17] is the EMB-tree.
It is motivated by the fact that the VO of the MB-tree
is too large, containing up to f − 1 digests for each node
in the path toward a boundary point. In Figure 2(a), for
instance, the MB-tree inserts 7 digests of N2 in the VO.
To remedy the problem, the EMB-tree embeds a binary
MHT within each node, and includes in the VO only
log f hashes per node. Figure 2(b) shows the embedded
MHT for N2. The VO contains the solid hashes, and
skips the shaded ones. As noted in [17], the best EMB-
tree variant is the EMB−-tree. The EMB−-tree does not
explicitly store the embedded trees, but derives them on
the fly during VO computation, e.g., in Figure 2(b), N2

only stores the 8 digests of its children (shown circular)
and skips the square hashes. In the following, we refer to
the EMB−-tree as EMB-tree for simplicity.

The EMB-tree has significantly smaller VO than the
MB-tree, and similar size and query performance. Our
technique, PMD, has even smaller VO than EMB-tree.
The most important advantage of PMD, however, is that
it incurs only a fraction of the query response time, the
storage overhead, and the construction cost of the MB-
/EMB-tree. Furthermore, our approach provides the pro-
cessing and architectural flexibilities discussed in Sec-
tion 1.

Regarding multi-dimensional queries, [10,19] propose
methods for range verification, by incorporating MHTs
into multi-dimensional range trees [3]. These techniques
focus on memory-resident data; range trees incur high
space overhead, and are not suitable for disk-based in-
dexing. I/O efficiency is taken into account in adapta-
tions of these approaches, which however process only
special types of range queries, and are based on theo-
retical indexes. On the other hand, our spatial methods
(in Section 6) target explicitly disk-resident data, build

upon commonly used indexes, and process general range
and nearest neighbor queries.

Another stream of related work focuses on probabilis-
tic result verification, where tampering with the query
results can/cannot be detected with a certain probabil-
ity. [32] proposes that the owner inserts fake tuples in
the outsourced database and shares these tuples with
the users. Upon receipt of an answer from the server, the
querying user searches in the result for the fake tuples
that should be returned. If none of these tuples is miss-
ing, then the answer is considered legitimate. This ap-
proach requires that the users are trusted (an assumption
we do not make) and, more importantly, there is a signif-
icant possibility that tampering is not detected (e.g., if
the server modifies some real tuple but no fake one, or if
no fake tuple satisfies the query). In [31] the user stores
locally some (pre-computed) query results and identi-
fies tampering if some tuples falling in the intersection
of the pre-computed and the posed queries are missing
from the server’s responses. Similar to [32], tampering is
not always detected.

In addition to result verification methods, research on
outsourced databases has also considered other data se-
curity problems. For example, [12] proposes techniques
that allow SQL query processing over encrypted data.
[30,21] study security in conjunction with access con-
trol, while [1,15] address privacy-preservation issues. The
above techniques consider related, yet different problems
from ours, and provide complementary methods for se-
curing outsourced databases.

4 Static One-dimensional Data

In this section we present the Partially Materialized Di-
gest scheme (PMD), our AC verification method for static
data. We analyze its performance and compare it quali-
tatively with existing methods. Table 1 summarizes the
primary symbols used, along with their interpretation.

Symbol Description
S(m) owner’s signature on message m
H(m) digest of message m
N data cardinality
f fanout of the MI
n number of external nodes in the MI
Ei i-th external node of the MI
Hi root digest of Ei’s lower tree

dMI , dDI , du, dl height of MI, DI, upper tree, lower trees
S query result (including boundary objects)
B block size
|h| size of hash value
|s| size of signature
|num| size of pointer, integer or real number

CI/O, Ch, Cs, Cv cost of I/O, H(m), S(m), S−1(m) operation

Table 1 Primary symbols and functions

Partially Materialized Digest Scheme: An Efficient Verification Method for Outsourced Databases 5

4.1 The PMD Approach

Let our database contain N objects of the form 〈id, key〉,
where id is a unique object identifier and key is the in-
dexed attribute. The main index (MI) is a standard B+-
tree on key, i.e., it does not store any verification infor-
mation. Every external (i.e., lowest level) node Ei stores
data objects, and a sibling pointer to the next external
node Ei+1. The MI is used for query processing.

In this paper we consider equality and range selec-
tions. Equality selections are treated as a special case
of range selections, so we focus on the latter. A range
query requesting objects with key in interval r = [a, b] is
evaluated by descending the MI down to the first object
with key larger than or equal to a, and then reporting
all subsequent objects with keys up to b. If the search
needs to proceed to the next data page (external node),
we utilize the sibling pointers of the B+-tree. The inter-
nal levels of MI are irrelevant to VO computation. The
structure of the external level, however, affects the VO
and the DI, as we describe next.

Digest Index and AC Verification. To prove authen-
ticity and completeness, the server returns to the user,
in addition to the objects inside the query range r, the
two boundary objects, p− and p+, falling immediately to
the left and to the right of r. AC can be proven if we
show that (i) the objects between p− and p+ have not
been tampered with, and (ii) all objects between p− and
p+ are returned. To prove (i) and (ii), we compute a VO
using the digest index (DI). Our method guarantees that
VO construction incurs a maximum of 2 disk accesses,
and that the VO has near-minimal size.

Conceptually, the DI is a composite tree. Letting n
be the number of external nodes in MI, the DI consists
of an upper MHT built on top of n lower ones. The DI
is constructed as follows. For each external MI node Ei,
we compute a (lower) MHT. In a second step, we build
the (upper) MHT over the roots of the lower trees. The
root of the upper tree is signed with the owner’s pri-
vate key. The upper and lower trees are binary. Thus,
the DI is essentially an MHT with fanout 2. This is a
desirable property, since the VO size is minimal for bi-
nary MHTs [19] (as discussed in Section 2.1). The DI,
however, is usually not a perfect binary tree, leading to
a near-minimal VO size.

Figure 3 illustrates the DI in a scenario where the
database contains N = 16 objects (p1 to p16). Assuming
that each MI leaf contains 4 objects, the MI has n = 4
external nodes. For each of them, we compute a lower
tree on the objects pi = 〈idi, keyi〉 therein. In the figure,
hi|j = H(H(pi)|H(pj)) (where | indicates concatenation)
and Hi is the root of the i-th lower tree. The upper tree
is built over all the Hi values; Hi|j = H(Hi|Hj) and
S(H1|2|3|4) is its signed root.

The DI works like an ordinary MHT. Consider the
paths that lead to the left and to the right boundary ob-
jects, p− and p+. The VO for a range query contains (i)

h5|6 h7|8

p1 p2 p3 p4 p5 p6 p7 p8

h1|2 h3|4

H1

H1|2

S(H1|2|3|4)

h9|10

H2 H3 H4

H3|4

p9 p10 p11 p12 p13 p14 p15 p16

h11|12 h13|14 h15|16

External nodes of MI

Lo
w

er
 tr

ee
s

U
pp

er
 tr

ee

Query range
External nodes of MI

E1 E2 E3 E4

Fig. 3 Digest index example

the signed DI root, (ii) all left sibling hashes to the path
of p−, and (iii) all right sibling hashes to the path of p+.
Upon receipt of the query result S, the user combines
it with VO components (ii) and (iii), to reconstruct the
(missing) part of the DI between the paths of p− and p+.
Then, she verifies with the owner’s public key whether
the root of DI (i.e., component (i) of the VO) matches the
locally computed root hash. If they match, S is deemed
both complete and authentic; the collision-resistance of
the hash function ensures that it is computationally in-
feasible for the server to tamper with the result and yet
manage to produce hashes that match the original ones.

Returning to our example, consider the range query
in Figure 3. The query result is {p8, p9, p10}, and the
boundary objects are p− = p7 and p+ = p11. The DI
paths leading to p− and p+ are shown bold. The server
returns to the user objects p7 to p11, together with the
VO. Component (i) of the VO is the signed root, S(H1|2|3|4).
Component (ii) contains hash values H1 and h5|6, while
(iii) consists of H4 and H(p12). During AC verification,
the user concatenates h5|6 and H(H(p7)|H(p8)) to cal-
culate1 H2. Then, she appends H2 to H1, to derive H1|2.
Similarly, she computes h9|10, h11|12 and then H3 and
H3|4. Finally, she calculates H(H1|2|H3|4) and verifies
whether it was signed by the data owner (using compo-
nent (i) of the VO and the owner’s public key).

We note here that the general idea to create a VO
using the left and right sibling hashes of p− and p+

was first introduced in [9] (focusing on in-memory data),
and has been used by subsequent research, including the
MB-/EMB-tree. Verification in PMD follows the same
paradigm, but introduces the aforementioned DI decom-
position into upper tree and lower trees. This approach is
suited to disk-resident data; it allows for an effective DI
compression/materialization, which leads to low space
consumption and fast VO computation, as we describe
next.

Digest Index Compression. To reduce the storage
overhead at the server and the I/O cost for VO com-
putation, we do not materialize the entire DI structure.

1 Note that the user knows objects pi for i = 7...11, and
she can locally compute the corresponding H(pi).

6 Kyriakos Mouratidis et al.

Group of α upper tree leaves
Explicit tree Signed root H1H2 H3H4

Suppressed nodeMaterialized nodeMaterialized leafUpper tree
Fig. 4 Upper tree compression

Based on the fact that a page access is three orders of
magnitude more expensive than a hashing operation [17,
26], we do not store the lower trees. Instead, when we ac-
cess an external MI node (during query processing) and
require values from the corresponding lower tree of the
DI (to form the VO), we compute them on the fly. In the
example of Figure 3, for instance, query processing loads
the external node E2 of MI to access p7 and p8. Since
p5 and p6 are also necessarily read, the server computes
h5|6 and inserts it into the VO.

Following the same principle as above, we do not store
the entire upper tree. Assuming that a disk page fits 4
hashes (i.e., B = 4 · |h|) in Figure 3, we materialize only
H1, H2, H3, and H4, and place them in a single page;
this page constitutes the DI, and it is the only verification
information stored in the server (in addition to the signed
root). If H3|4, for instance, is part of the VO for some
query, then it is computed on the fly asH(H3|H4). In the
general case, DI is still a flat structure, but it consists
of multiple pages. Each DI block contains verification
information for α consecutive MI leaves Ei (we discuss
α’s computation later).

In particular, we partition the n upper tree leaves
(i.e., the n lower tree roots) into groups of α. For each
group, we build a binary MHT (suppressed tree). In a sec-
ond step, we construct one binary MHT (explicit tree) on
top of all the suppressed ones, as shown in Figure 4. For
every group (e.g., the group of the α leaves shown in the
figure), we form one DI page by inserting (i) its α hashes
(the solid circles), and (ii) the sibling digests to its path
in the explicit tree (hashes H1, H2, H3, shown as solid
squares). In other words, the internal nodes of the sup-
pressed tree (striped squares) are not materialized, but
they are computed on the fly (using the α leaves/solid
circles) when needed. Overall, the DI contains n

α disk
pages.

The number of explicit nodes to be stored with a
group (i.e., the cardinality of set (ii) above) equals the
height of the explicit tree; this height is log n

α , since it is
built over n

α suppressed tree roots. Each group and its

corresponding explicit nodes should fit in a page, leading
to the condition:(
α+ log

n

α

)
· |h| ≤ B , (1)

where B is the block size and |h| is the size of a hash
value. We set α to the largest integer that satisfies this
condition, in order to minimize the size of DI. For all
practical problem settings, du · |h| � B, which means
that α is always larger than 1 and that the verification
information for an external MI node always fits in a sin-
gle page2. Thus, we can compute VO components (ii)
and (iii) for any range query with at most 2 disk ac-
cesses, one for each boundary object. If both p− and p+

are covered by the same suppressed tree, then only one
page access is needed (for their common DI block).

A final remark concerns the linkage between MI and
DI. Upon accessing the MI node Ei that contains a bound-
ary data object, we need to read the DI page that stores
verification information about Ei. To facilitate this op-
eration, we keep in each external MI node a pointer to
the corresponding DI block. The size and performance of
the MI are practically unaffected by these extra pointers,
since there are only n of them (where n� N), stored at
its external level. If, however, we wish not to modify the
structure of the MI at all (e.g., it is already deployed by
the time the AC requirements are imposed), we need to
maintain a directory. The directory contains a 〈key, ptr〉
pair for each DI block, where ptr is a pointer to the block,
and key is the smallest key among the objects it repre-
sents. For most problem settings, the directory fits in a
single page, and it could be kept either in main memory
or on the disk.

4.2 Performance Analysis

This section analyzes the performance of PMD with re-
spect to the cost factors listed in Section 1. To simplify
the presentation, we assume that all MI nodes are full,
and that all divisions have residual zero. We also assume
that the sizes of a pointer, an integer and a real number
are all equal to |num|.

In the MI, each internal node stores f pointers to
its children and f − 1 keys. Thus, the MI fanout is f =
B−|num|
2·|num| +1. Every external node contains f−1 data ob-

jects. Hence, MI has n = N
f−1 leaves, and height dMI =

1 + logf n ' logf N . Assuming that the upper and lower
trees of the DI are perfect binary trees, the height of the
(conceptual) DI structure is dDI = logN . The heights
of the upper and lower trees are du = log n and dl =
log(f − 1), respectively.

Index construction time. Index construction includes
computing and storing the MI and DI. The CPU time for

2 For typical values B = 1 Kbyte and |h| = 20 bytes, n
must be larger than 250 for this statement to be false.

Partially Materialized Digest Scheme: An Efficient Verification Method for Outsourced Databases 7

building the MI is negligible compared to the other in-
volved factors and is ignored. The MI has

∑i=dMI−1
i=0 f i =

fdMI−1
f−1 nodes, and storing it incurs fdMI−1

f−1 · CI/O cost.
The conceptual DI structure has 2 · N − 1 nodes. Each
node requires a digest computation. Thus, the CPU time
to build the DI is (2·N−1)·Ch+Cs, where Cs is the cost
of signing its root. To calculate the I/O for storing DI,
let α be the maximum integer that satisfies Condition 1.
The compressed DI occupies n

α disk pages. In total, the
index construction cost is(
fdMI − 1
f − 1

+
n

α

)
· CI/O + (2 ·N − 1) · Ch + Cs . (2)

Data uploading cost. The MI and DI could be either
built at the server side or sent directly by the owner. In
the first case, the owner needs to upload only the data
objects and the signed root of DI, incurring a cost of

2 ·N · |num|+ |s| , (3)

where |s| is the size of the signed DI root. If the owner
builds the MI and DI at her side and uploads them to
the server, the communication cost equals the storage
overhead and is given by Formula 4 below.

Space requirements. As previously discussed, the MI
contains fdMI−1

f−1 nodes, and the DI consists of n
α disk

pages. Hence, the storage overhead at the server is(
fdMI − 1
f − 1

+
n

α

)
·B + |s| . (4)

Query processing and VO creation cost. Query pro-
cessing time at the server breaks into I/O cost for the MI
and DI, as well as CPU time for on-the-fly hash computa-
tions needed to build the VO. To evaluate a range query,
we traverse MI down to p−, incurring dMI − 1 internal
node accesses. Next, we serially load the external nodes
to the right of p− (following the sibling pointers) until we
reach p+. If |S| denotes the number of objects returned
to the user, including the two boundary ones, we access
|S|
f−1 + 1 pages in the worst case.

To create the VO we access a maximum of two DI
pages. Regarding CPU time, for each boundary object
p− and p+, VO computation involves on-the-fly digest
computations (i) to construct the lower trees containing
the boundary objects p−, p+, and (ii) to build the cor-
responding suppressed tree. The lower tree is computed
over f − 1 objects, and we need a digest for each of its
nodes, except for the root (whose value is materialized in
the DI). Thus, we perform 2 · f − 4 hash operations. The
suppressed tree is constructed on α digests, requiring as
many hash computations as the number of its internal
nodes, i.e., α − 1. The overall query processing and VO
computation cost is(
dMI +

|S|
f − 1

+ 2
)
· CI/O + 2 · (2 · f + α− 5) · Ch . (5)

Server-user communication cost. The server returns
to the user set S (containing the objects that satisfy the
query and the two boundary ones) and the VO. VO com-
ponent (i) is the signed DI root of size |s|. Component
(ii) (i.e., left sibling digests to the path of p− in the
conceptual DI) contains a maximum of dDI hash val-
ues. Similarly, component (iii) consists of at most dDI
digests. Hashes common in components (ii) and (iii) are
sent only once, but we consider the worst case where the
paths of p− and p+ are disjoint. In addition to digests,
VO also includes information about their position in the
DI to facilitate proper verification at the user side. Simi-
lar to [17], we ignore this information in our analysis, as
it is negligible compared to the size of the hashes in the
VO. The total amount of information sent by the server
to the user is

2 · |S| · |num|+ 2 · (dDI − 1) · |h|+ |s| . (6)

AC verification cost. Given the set S and the VO,
the user has to compute the missing digests and combine
them with the VO to retrieve the root of the DI. This
procedure involves calculating 2 · |S| − 1 hashes on top
of objects in S, and combining them (i.e., concatenat-
ing and then hashing) with the VO digests, incurring a
maximum of 2 ·(dDI−1) additional digest computations.
Finally, the user has to verify whether the computed DI
root matches the one returned in the VO, using the ow-
ner’s public key. Letting the cost of this operation be Cv,
the total AC verification cost is

(2 · |S|+ 2 · dDI − 3) · Ch + Cv . (7)

4.3 Quantitative Comparison with Existing Methods

To provide an intuition about the performance of our
technique, we use the above analysis and that in [17] to
estimate the various costs of PMD, MB-, and EMB-tree
in a typical problem setting. Table 2 contains expected
values for the three methods in a scenario where data
cardinality N = 300K objects, block size B = 1 Kbyte,
and |h|, |s|, |num| are 20, 128, and 4 bytes, respectively.
We assume that a page access takes CI/O = 10 msec,
a hash computation Ch = 3 µsec, a signing operation
Cs = 3 msec, and a signature verification Cv = 200 µsec.
A space utilization of 67% is assumed for MI, MB- and
EMB-tree (i.e., the average fanout is 67% of its maximum
value shown in the first row of the table).

The fanout of MI in PMD is almost four times larger
than its competitors. This is because the MI is a con-
ventional B+-tree, while the MB-/EMB-tree nodes store
extra (verification) information, which limits their capac-
ity. The reduced fanout of MB-/EMB-tree leads to over
3.5 times higher space requirements than PMD. The size
of the latter breaks down to 3,583 Kbytes for MI and 81
Kbytes for DI, revealing that the PMD scheme enables

8 Kyriakos Mouratidis et al.

Property PMD MB EMB
Fanout 128 36 36
Space Requirements (Kbytes) 3,664 13,538 13,538
Construction Time (sec) 38.44 135.42 137.18
Query Processing - no VO (sec) 3.57 13.05 13.05
Query Processing - with VO (sec) 3.59 13.05 13.05
VO Size (bytes) 848 2208 848
AC Verification (sec) 0.18 0.1 0.18

Table 2 Expected performance

AC verification with only 2% extra space (compared to a
standard, non-authenticated B+-tree). The construction
time is dominated by the I/O cost to store the data-
structures and, since PMD is much more concise than its
competitors, it is built faster. The size of the indexes also
determines the owner-server communication cost (if the
indexes are built and uploaded by the owner), resulting
in PMD being more efficient in terms of network over-
head too. If the data-structures are built at the server,
then the communication cost is the same for all methods.

Table 2 includes the processing cost of a range query
with selectivity 10%, in situations where the user does or
does not request for AC guarantees. PMD is more than
three times faster than MB-/EMB-tree in both cases,
mainly due to the higher fanout of the MI. In the non-
authenticated case, PMD performs identically to a plain
B+-tree. In the authenticated case, it takes only 0.02 sec
more (3.57 versus 3.59 sec), due to VO computation. This
fact highlights that PMD provides AC guarantees at a
marginal extra cost with respect to a non-authenticated
B+-tree. Note that the 0.02 sec spent for VO construc-
tion correspond essentially to the I/O cost for accessing
2 DI pages, since the 421 hash computations performed
take only 0.0013 sec.

In terms of server-user communication cost, the dif-
ference lies in the VO size. The number of hashes in the
VO increases with the MHT fanout. PMD and EMB-
tree have binary (conceptual) MHTs and, thus, small and
equal VO size3. MB-tree uses an MHT with a fanout of
36, leading to a much larger VO and, hence, higher net-
work overhead. On the other hand, the AC verification
cost at the user side decreases with the MHT fanout, and
the MB-tree is the fastest method.

To summarize, according to our analysis, PMD is su-
perior to its competitors in terms of all cost factors by a
large margin, the only exception being the AC verifica-
tion time. Our experiments in Section 7 verify the above
empirically. In addition to the performance benefits of
PMD over its competitors, it provides flexibility crucial
to database outsourcing applications, as discussed in Sec-
tion 1.

3 As we show in the experiments, in practice PMD has
smaller VO than EMB-tree because its MHT (i.e., the DI)
is closer to a perfect tree.

4.4 Discussion

So far we assumed that our database contains objects
of the form 〈id, key〉. An indexed relation, however, may
have records with additional attributes (and size several
times larger than 2·|num|). In this case, the MI is built on
top of the relation file; its external nodes contain entries
of the form 〈ptr, key〉, where ptr is a pointer to the actual
record of the relation that corresponds to key.

The issue in this case is that the lower trees cannot
be suppressed. Consider the example in Figure 3. An
object digest H(pi) is no longer H(idi|keyi), but it is
the hash value of the entire record in the relation that
keyi corresponds to. In other words, we need to access
the relation file in order to compute H(pi). To cure this
problem, we store into the DI all the object hashes. The
DI structure is similar to Figure 4, the difference being
that at the bottom level we have object digests instead
of lower tree roots, and that the explicit tree becomes
larger.

Every DI block contains verification information for
a group of κ consecutive objects. There is a suppressed
tree for every group, i.e., there are N

κ suppressed trees
in total. As such, the height of the explicit tree is log N

κ .
Each group and its corresponding explicit nodes (whose
number is equal to the height of the explicit tree) are
placed in a page, leading to the condition:(
κ+ log

N

κ

)
· |h| ≤ B . (8)

The size of the DI is N
κ pages, which is considerably

larger than before. However, the DI retains the property
that VO construction requires a maximum of 2 page ac-
cesses (one for each boundary object). Apart from the
structure of the DI, query processing, VO construction,
and AC verification are similar to Section 4.1.

To provide some performance indications, let us con-
sider the setting of Table 2 again. Here, κ is 38, which
implies a DI of 7,895 Kbytes. MI is unchanged, and the
total space consumption in PMD is 11,478 Kbytes (which
is still 15% smaller than that for MB-/EMB-tree). The
query processing time is not affected, and PMD remains
more than three times faster than MB-/EMB-tree. The
VO size and the AC verification cost are also identical
to the ones shown in the first column of the table. Note
that in the above discussion we focus on the index char-
acteristics, and exclude from consideration the size of the
indexed relation and the I/Os spent to fetch the entire
result records (these costs are identical across all meth-
ods).

5 Dynamic One-dimensional Data

The basic PMD approach, as presented in Section 4, is
targeted at and optimized for static databases. For dy-
namic datasets, however, its performance deteriorates,

Partially Materialized Digest Scheme: An Efficient Verification Method for Outsourced Databases 9

Groups of β lower tree roots
Signed rootUpper tree Suppressed tree

Group of βinternal nodesGroups of βinternal nodes
Materialized node

Fig. 5 Digest index in the dynamic case

because each update (object insertion or deletion) re-
quires modification of all DI pages. Consider the example
in Figure 4, and assume that the owner inserts/deletes
an object in the database. Let the external MI node that
stores the object correspond to one of the leaves shown
as solid circles. The updated value of this leaf causes di-
gest changes that propagate upwards until the root of the
DI, affecting H4 and the explicit nodes shown as hollow
squares. Each DI page materializes one of these three
hashes; e.g., the DI block corresponding to the subtree
of H3 contains H4, and DI pages below H1 store the
top hollow square (i.e., the left child of the root). Thus,
we need to modify all DI blocks to reflect the update,
incurring (nα) I/O operations.

To avoid this problem, we propose the dynamic PMD
(dPMD). The main idea is to materialize the DI as a tree
instead of a flat structure. To achieve this, while keeping
the storage overhead and I/O cost for VO creation low,
we materialize information only in specific levels of the
DI, termed materialized levels, and suppress all the oth-
ers (as opposed to suppressing only the lowest subtrees
in the basic PMD technique).

Figure 5 illustrates this procedure. The DI is built
bottom-up. The external level is a materialized level.
The lower tree roots are partitioned into groups of β
(we discuss β’s calculation later). On top of each group,
we construct a (suppressed) binary MHT4. The roots of
these trees constitute the next materialized level; we par-
tition them into groups of β and compute a (suppressed)
binary MHT for each group. We repeat this procedure
until the number of resulting root digests is no more than
β. The suppressed trees are shown as striped triangles.

The DI skips the intermediate nodes of the suppressed
trees, and stores only the digests in the materialized lev-
els. It is essentially a tree with fanout β where each node
corresponds to a suppressed tree; the node stores (i) the
β leaf digests of the suppressed tree, and (ii) a pointer to
its parent node. Note that the pointers in DI lead from
the children to their parent. Figure 6 shows DI materi-
alization for the example in Figure 5. Letting B be the
block size, the materialization procedure requires that

β · |h|+ |num| ≤ B . (9)

4 We only show two of these trees, and skip their interme-
diate levels.

Pages with β lower tree rootsMaterialized upper tr
ee Pages with β digests (internal nodes)Pointers N1 N2 N3

Fig. 6 Materialization of the DI

VO construction is performed by bottom-up traversal
of the DI. Consider Figure 6, and assume that we want
to retrieve verification information for object p falling in
an external MI node Ei. Let N3 be the DI node that
contains the root of Ei’s lower tree. We first access N3

and build its (suppressed) binary MHT on the fly. We
insert into the VO the digests that are needed for p, and
follow the pointer to N2. We compute the suppressed
tree over the hashes in N2 and append the necessary
digests to the VO. Finally, we access N1 and retrieve
the remaining digests by building its MHT. To form the
VO for a range query, we need verification information
for two boundary objects. We traverse the DI bottom-up
for both objects simultaneously, ascending levels one by
one, in order to avoid accessing common DI nodes (and
computing their suppressed trees) twice.

Regarding update handling, assume that the owner
inserts/deletes a point p into/from the database and that
the update does not trigger reorganization of the MI.
Let Ei be the external MI node that stores p. The lower
tree of Ei must be recomputed and its root digest Hi

updated in the DI. Consider Figure 6 and assume that
Hi is stored in N3. We access N3, update the value of Hi,
and recompute the suppressed tree of N3. Following the
parent pointer to N2 and, repeating the same process for
it, we reach N1. Finally, we compute the root of the DI
as the root of N1’s suppressed tree. The owner signs the
new root and uploads it to the server. Modification of an
object is treated as a deletion followed by an insertion.

It is possible that the updates incur reorganization in
the external level of MI (i.e., node merges/splits). Con-
sider the case where all DI nodes are packed and an ex-
ternal node of MI splits. This leads to recursive splits in
the corresponding path of the DI. To avoid this prob-
lem, we utilize only a fraction of its node capacity when
we build it for the first time. Determining this fraction
depends on the expected update volume; in our experi-
ments, setting it to 90% works well even for large num-
bers of updates. Another important remark regards the
processing of multiple updates. The maintenance cost for
both the MI and DI can be greatly reduced by process-
ing updates in batches (rather than individually), since
multiple updates may affect the same MI and DI nodes.

10 Kyriakos Mouratidis et al.

Accessing/modifying these nodes only once for many up-
dates saves a considerable fraction of the I/O cost.

Performance analysis. The performance analysis of
dPMD is similar to that in Section 4.2, the main differ-
ence being the number of nodes/pages in the DI. The DI
is materialized as a tree with fanout β, built on top of
n hashes. Thus, the materialized DI has height5 d′DI =

logβ n and
∑i=d′DI−1
i=0 βi = βd′DI−1

β−1 nodes. Its construc-
tion time and storage overhead are derived by Formulae 2

and 4, respectively, by replacing factor n
α with βd′DI−1

β−1 as
the DI size.

VO computation in dPMD incurs 2·d′DI−1 I/O oper-
ations6 instead of 2 for the basic PMD method. Further-
more, for each accessed DI node, we build a suppressed
tree over its β hashes, requiring β−2 hash computations
(the root digest need not be computed as it is stored at
the higher DI level). Thus, the CPU time for VO genera-

tion is βd′DI−1
β−1 · (β−2) ·Ch. The overall query processing

and VO computation cost is given by Formula 5 subject
to the above changes. The performance of dPMD for the
remaining factors is given by the same formulae as in
Section 4.2, since the height of the conceptual DI and
the size of VO are the same as in PMD.

In the dynamic case, there is an extra performance
factor, the update cost. It breaks down into MI and DI
maintenance time, plus cost Cs for signing the new DI
root. For both PMD and dPMD, the I/O for updating
the MI is the same, and equal to dMI , assuming that no
reorganization takes place. The cost to update the DI in
dPMD is d′DI · (CI/O+(β−2) ·Ch), due to accessing d′DI
DI nodes and computing their suppressed trees. This is
much lower than that in PMD, where the required DI
maintenance incurs n

α ·CI/O + (2 ·f +α−5) ·Ch time, as
all its pages are modified and the lower and suppressed
trees of the inserted/deleted object are recomputed.

Discussion. To provide an intuition about the perfor-
mance of dPMD, we use the scenario of Section 4.3 to
compare it with alternative methods, starting with PMD.
First, the DI in dPMD is smaller (73 versus 81 pages), be-
cause (i) it materializes fewer hashes (since it suppresses
more subtrees/nodes), and (ii) PMD replicates some up-
per level hashes in multiple pages. This implies lower
storage overhead and index construction time (requiring
3,656 versus 3,664 Kbytes, and 38.36 versus 38.44 sec, re-
spectively). The dPMD technique is slightly slower only
for VO computation, reading more DI pages and per-
forming some extra hashing operations. In our example
scenario, the difference is 0.03 sec, corresponding practi-
cally to three extra I/Os, since digest computations are
very fast. The VO size and AC verification cost is the

5 Note that the height of the conceptual DI structure re-
mains dDI = log N , assuming that all lower and suppressed
trees are full.

6 The root of DI is loaded once for both boundary objects,
and thus the subtraction of one page access.

same between our methods, as the DI is binary in both
cases. The most important difference is the update cost;
updating the MI takes exactly the same time (0.03 sec)
but maintaining the DI takes 0.03 versus 0.81 sec, for
dPMD and PMD, respectively.

Essentially, dPMD achieves as large of a performance
improvement over the MB-/EMB-tree as PMD does; i.e.,
the general picture is similar to Table 2. Also, it is su-
perior in terms of update cost. The MB- and EMB-
tree descend the index from the root down to the in-
serted/deleted object, updating the corresponding keys
and digests in the visited nodes. Due to their smaller
fanout (and, consequently, larger tree height), this pro-
cedure accesses more nodes than updating MI in dPMD.
Furthermore, the low fanout of the MB-/EMB-tree im-
plies more frequent index reorganization and, thus, higher
cost.

A final remark concerns a critical point in updating
outsourced databases. When the owner issues updates,
a malicious server may ignore them, and continue to an-
swer user queries over the obsolete dataset. Since the old
version of the database was authenticated by the owner,
the user considers the results legitimate. The problem
has been identified in [17]. A practical solution is to ap-
pend an expiry time to the tree root prior to signing,
so that the users can verify the freshness of the results.
Another common practice is for the owner to publish a
list of revoked signatures, so that the users can reject
obsolete verification information.

6 Verification in Spatial Databases

In this section we consider verification in spatial data-
bases. We assume a unit data-space, i.e., all object co-
ordinates (x, y) are in [0, 1]2. We focus on range queries,
which retrieve the objects that fall inside an axis-parallel
rectangle, but our techniques extend easily to k nearest
neighbor (k-NN) queries, as we discuss later. We present
two methods, the Merkle R-tree (MR-tree) and the Par-
tially Materialized KD-tree (PMKD). The first is an ex-
tension of the MB-tree method to R-tree indexes, and
the second an adaptation of the PMD methodology for
spatial data.

6.1 The Merkle R-tree

Our first method, termed Merkle R-tree (MR-tree), builds
upon the R-tree index. We focus on the R-tree because it
is the standard spatial access method. However, the MR-
tree approach applies to other tree-like spatial indexes
too. Intuitively, the MR-tree results from the MB-tree
by treating node MBRs as the indexing keys. The differ-
ence is that the MR-tree also takes into account MBRs
for hash calculations and VO computation, in order to
provide AC guarantees.

Partially Materialized Digest Scheme: An Efficient Verification Method for Outsourced Databases 11

The MR-tree is an R-tree, where each internal node
Ni is associated with a digest hNi

over (the concatena-
tion of) the MBRs and digests of its children. To formal-
ize, let ej be the j-th entry (child) of Ni, and mbrj be ej ’s
MBR. The digest ofNi is hNi

= H(mbr1|he1 |mbr2|he2 |...),
where hashes hej are defined similarly forNi’s child nodes.
Structurally,Ni contains tuples of the form 〈mbrj , hej

, ptr〉,
wherembrj is represented by the coordinates of its bottom-
left and top-right corners (i.e., by 4 real numbers), and
ptr is a pointer to the disk block containing ej . An ex-
ception is the external level, where each leaf node stores
the data objects inside, and its digest is computed over
the hashes of these objects (i.e., no MBR information
is involved in object digests). The owner authenticates
the MR-tree by signing (the concatenation of) the root’s
MBR and digest.

VO computation is performed during query process-
ing, by inserting into the VO the MBR and digest of each
encountered entry ej that does not intersect the query
range. In Figure 7 we demonstrate VO computation as-
suming that the structure of the MR-tree is the same
as the R-tree in Figure 1(a), and that the query range
is the shaded rectangle R. First, we access the root of
the tree, and insert its signed digest into VO (the signed
root is always included in the VO). The first root entry,
N1, does not intersect with R and, thus, we include its
digest hN1 and MBR mbrN1 in VO. Note that hN1 and
mbrN1 are stored in the root, and we do not need to ac-
cess node N1. The other root entry, N2, overlaps with R
and, hence, we visit it. N2’s entries N8 and N9 are dis-
joint from R and we append their MBRs and digests to
VO (i.e., mbrN8 , hN8 ,mbrN9 and hN9). Entries N6 and
N7 of N2, on the other hand, intersect R and are visited.
Objects l,m, n, o, r form the query result, while encoun-
tered objects outside R (i.e., objects p, s, x) are included
in VO.

N2N7
N8
N9

p xr sN6l m no
Query range R

N1
Fig. 7 Range query in MR-tree

Upon receipt of the result and its VO, the user can
verify authenticity and completeness, following a pro-
cedure with as many steps as the MR-tree levels (i.e.,
three in our example). In a first step (corresponding to
the leaf level), she computes the hashes of all returned
objects (regardless of whether they belong to the re-

sult or the VO), and derives hN6 and hN7 . In a second
step (for the second level), she uses the object coordi-
nates to derive7 mbrN6 and mbrN7 . Then, she derives
hN2 from calculated {mbrN6 , hN6 ,mbrN7 , hN7} and VO
entries {mbrN8 , hN8 , mbrN9 , hN9}. Having ascended to
the root level, in the third step, the user computes mbrN2

(from mbrN6 ,mbrN7 as calculated in the previous step)
and VO entries mbrN8 , mbrN9 . Then, she computes the
root MBR (from mbrN2 and VO entry mbrN1). Finally,
she concatenates the root MBR with its digest (derived
from previously computed mbrN2 , hN2 , and VO entries
mbrN1 , hN1), and verifies whether it matches the signed
root of the MR-tree.

An important remark regarding the VO in the MR-
tree, is that (in contrast to the MB-tree case) it includes
considerable extra information to indicate the position of
its components in the R-tree. In our example, the user
needs to know that the root contains two entries, and
that the MBR and digest of the first entry are the ones
stored in the beginning of the VO. Similarly, for N2, she
needs to know which its entries are and their ordering,
and so on. This hierarchy information, essentially, pro-
vides the structure of the visited part of the MR-tree.

Similar to the MB-tree, the MR-tree has two main
performance shortcomings. The first is that its fanout is
low, since storing a digest per entry in each internal node
consumes considerable space. In the typical case where
|num| = 4 and |h| = 20 bytes, the fanout is reduced to
half with respect to a simple R-tree, since every entry
requires 40 instead of 20 bytes. The second drawback
is that the VO contains MBRs and digests of numerous
MR-tree entries, incurring large server-user communica-
tion cost and AC verification overhead. These problems
motivate us to extend the PMD methodology to spatial
databases, yielding PMKD (described in the next sec-
tion). We consider PMKD our primary contribution for
spatial databases, and use the MR-tree as a baseline that
represents the conventional approach of integrating the
data with the verification indexes. We note that a tech-
nique similar to the MR-tree appears in [33].

6.2 The Partially Materialized KD-tree

PMKD follows the PMD paradigm, extracting the hashes
from the main index (MI), and storing them into a sepa-
rate structure, the digest index (DI). The MI can be any
spatial access method. Its leaf level, however, must be a
partition of the data-space; i.e., the extents of external
MI nodes should not overlap with each other, and their
union should be the entire data-space. Therefore, prior to
MI construction, we iteratively partition the space with
a KD-tree, denoted as TKD, until the number of objects
in each bucket becomes less than or equal to C = B

3·|num| ;
C is the maximum number of objects that fit in one disk

7 Note that a node MBR is unambiguously defined as the
minimum box enclosing its entries.

12 Kyriakos Mouratidis et al.

page, assuming that each object is represented as a tuple
〈id, x, y〉, where x and y are its coordinates. Let SC be
the set of resulting TKD buckets. The MI is built in two
steps. First, we form a page (i.e., an external MI node)
Ei for each bucket in SC , by storing inside all the ob-
jects of the bucket. In a second step, we assign to every
Ei the extent brEi

of the corresponding bucket, and in-
dex them on brEi with a spatial access method (e.g., an
R-tree). The resulting structure is used as the MI. Note
that, at the external MI level, we use the brEi

bounding
boxes instead of tight MBRs, so that the space partition-
ing property is retained. This property is necessary for
checking the completeness of query results.

Assuming the data of Figure 1(a) and that C = 3,
Figure 8 shows the buckets in SC , and the TKD struc-
ture. We use notation Nj for internal TKD nodes. The
Ni−j marks in Figure 8(a) indicate the splitting lines be-
tween nodes Ni and Nj . We denote the leaves of TKD
(i.e., the buckets in SC) by Ei, to indicate their con-
nection with the MI; external MI node E4, for instance,
contains objects l,m, o and is indexed (in the MI) accord-
ing to the extent of its bucket in Figure 8(a). Processing
a range query R on the MI accesses (in addition to some
internal nodes) leaves whose brEi

overlaps with R, i.e.,
it loads nodes/pages E3, E4, E5 and E7.

a b
c

d

e

f
g

h
i

j

k

p

xr
s

t
u

v
w

l
m

n

o

Query range R
N1-2

N

3-4 N5-6
E1 E2

E3 E4 E5
E6

E7 E8
(a) Space partitioning for C=3

N3 N1
N4 N5 N6N2

E3 E4E1 E2 E5 E6 E7 E8
TKD root

(b) T KD down to SC

Fig. 8 T KD partitioning and structure

Having built MI, it remains to construct the DI for
VO computation. The DI is derived by TKD as follows.
Given SC , we continue KD-tree splitting within each Ei
until every bucket contains exactly one object, i.e., we
continue partitioning the space with TKD all the way to
the data level. Figure 9 illustrates the final TKD parti-
tioning and structure (we only show the subtrees of E4

and E7, to avoid cluttering the figure). Each object p
resides in one and only one bucket. We denote as brp the
extent of p’s bucket, and refer to it as the bounding re-
gion of p. We define as digest of object p the hash value
hp = H(p.id|p.x|p.y|brp), i.e., we include its bounding
region in the digest computation.

Conceptually, the DI is a binary MHT built on top
of the object digests, and having the same structure as
TKD. We include brp into hp due to our AC verification
mechanism described next. The DI is shown in Figure 10,

a b
c

d

e
f g

h
i

j
k

p

xr
s

t
u

v
w

l
m

n

o

Query range R

(a) Final space partitioning

l m o
N7

i j k

N3 N1
N4 N5 N6N2

E3 E4E1 E2 E5 E6 E7 E8
TKD root

N8
(b) Final T KD

Fig. 9 Final T KD partitioning and structure

skipping again some lower trees for clarity. Its upper tree
follows TKD down to SC while the lower trees are given
by the subtrees of each Ei in the final TKD. The owner
certifies the DI by signing its root. Lower trees (along
with brp for objects in S) are implicit, i.e., they are com-
puted on the fly when necessary. The upper tree is mate-
rialized in the same way as in PMD (Section 4) for static
data, and as in dPMD (Section 5) for dynamic ones.

H3 H1
H4 H5 H6H2

H3 H4H1 H2 H5 H6 H7 H8
DI root

hm|o
hm hohlLower tree for E4 hj hkhiLower tree for E7hj|k

Lo
we

r t
ree

s
Up

pe
r t

ree

Fig. 10 DI built according to T KD

Given a range query R, the server returns result S
containing all objects p whose brp overlaps with R. Re-
sult completeness can be proven if the union of the brp
of objects in S completely covers R. The disjointness of
bounding regions guarantees that no object outside S
falls in R. Thus, the server must (i) return regions brp
to the user as part of the VO, and (ii) show that they
are authentic (i.e., that their extent and contained ob-
ject have not been tampered with). Therefore, it verifies
each returned object p individually, by including into the
VO all sibling hashes (both left and right) to p’s path in
DI.

Consider the query range R in Figure 9. Result S
contains all objects e, i, l,m, n, o, p, r, since their bound-
ing regions (shown striped in Figure 9(a)) overlap with
R. To verify m, for instance, according to the DI in Fig-
ure 10, the user needs ho, hl, H3, H3, and H2. Since o and
l are in S, and the VO contains their bounding regions,
ho and hl can be computed at the user side. Thus, only
H3, H

3, and H2 are inserted into the VO for m. Simi-

Partially Materialized Digest Scheme: An Efficient Verification Method for Outsourced Databases 13

larly, we include hashes necessary for the verification of
the remaining objects in S.

So far we considered static data. Both the MR-tree
and PMKD, however, also work for dynamic databases.
The former is updated in a similar way to the MB-tree.
The latter can efficiently handle updates, provided that
the DI is materialized as in Section 5 for dPMD. Fur-
thermore, both techniques also apply to other types of
queries, such as k Nearest Neighbors (k-NN). A k-NN
query retrieves the k data objects that are closest to a
user-specified query point. The MR-tree extends to k-
NN processing using a standard NN search algorithm
for R-trees (e.g., the best-first technique of [14]). PMKD
is even more flexible, since its verification mechanism is
independent of query processing in the MI. VO compu-
tation/AC verification is essentially identical to that of a
circular range query with center at the query point and
radius equal to the distance of the k-th (i.e., farthest)
NN.

The focus of this section is on spatial (i.e., two-dimen-
sional) databases, but our techniques extend directly to
higher dimensions. They rely, however, on spatial indexes
which are known to suffer from the dimensionality curse
[16]. Their extension to specialized high-dimensional in-
dexes is an interesting direction for future work.

7 Experimental Evaluation

In this section, we experimentally evaluate the perfor-
mance of our methods. In Section 7.1 we focus on static
one-dimensional data, while in Section 7.2 we consider
dynamic ones. In Section 7.3 we compare our spatial
methods, and in Section 7.4 we summarize our exper-
imental results.

7.1 Static Data

First, we compare PMD and dPMD with the MB- and
EMB-tree on static data. For the latter two, we use the
implementation of [17] available at http://cs-people.
bu.edu/lifeifei/aisl/. We center our empirical study
around the space requirements, the index construction
cost, and the query processing time, but we also cover
the other performance factors listed in Section 1. In ac-
cordance with [17], we use synthetic datasets with uni-
formly distributed keys. The parameters in our simula-
tions are the data cardinality N , the block size B, and
the query selectivity σ. In each experiment, we vary a
single parameter and set the remaining ones to a default
value. N ranges between 100K and 500K objects, with
default N = 300K. B varies between 512 bytes and 4
Kbytes, with default B = 1 Kbyte. σ varies from 1% to
50% of the database size, with default σ = 10%. All di-
gests are 20 bytes long and computed using SHA1. On
our machine (with a 3 Ghz Pentium 4 CPU), a hash

Property PMD dPMD MB EMB
Fanout 128 128 36 36
Average Fanout 87 87 24 24
Total Size (Kbytes) 3,538 3,530 12,487 12,487
MI Height 3 3 4 4
MI Nodes 3,458 3,458 12,487 12,487
DI Height 1 3 – –
DI Nodes 80 72 – –
Materialized Hashes 4,080 3,672 312,486 312,486

Table 3 Index characteristics

computation takes Ch ' 3 µsec, and a random disk I/O
takes CI/O ' 10 msec.

Space Requirements. In Table 3, we summarize the
index characteristics for the 300K dataset. The low fanout
of the MB- and EMB-tree, and the numerous material-
ized hashes, lead to a large storage overhead; they require
around 3.5 times more space than PMD and dPMD.
Note also that the verification information (i.e., the ma-
terialized hashes) take up less than 80 Kbytes in our
methods, versus 6,103 Kbytes for MB-/EMB-tree. In ad-
dition to space consumption at the server, the size of the
structures also affects the owner-server communication
cost if the indexes are constructed at the owner side.

Another important observation about our techniques
concerns the size ratio between DI and MI. Since MI
is a plain B+-tree, the relative storage requirements of
DI and MI indicate that PMD and dPMD take up, re-
spectively, only 2.3% and 2% additional space compared
to a non-authenticated, conventional B+-tree. This per-
centage does not exceed 3% in any of the cases that we
tested.

Construction Cost. The factors that contribute to the
total construction time, albeit with a different impact
are (i) the number of I/O operations, and (ii) the num-
ber of hashing operations. To illustrate their individual
effect, we vary N from 100K to 500K and plot the corre-
sponding costs in Figures 11(a) and 11(b). The number
of I/Os is directly related to the index fanout. Build-
ing the MB- and EMB-tree incurs the same number of
I/Os, since they have the same structure and number of
nodes. The cost of PMD is similar to dPMD, because
they use the same MI. Due to its smaller DI though, the
latter incurs 0.3% fewer I/Os. The increased fanout of
our methods (128 versus 36 for the MB-/EMB-tree) leads
to significantly lower I/O cost. The difference from the
MB-/EMB-tree grows for larger N . Figure 11(b) depicts
the number of hashing operations for the same exper-
iment. PMD, dPMD and EMB-tree use binary MHTs
and, hence, they require roughly the same number of
hash operations. On the other hand, the MB-tree in-
cludes an MHT with fanout 36, and performs 1.9 times
fewer computations. Figure 11(c) shows the total con-
struction time, which is clearly dominated by the I/O
cost. Overall, our methods are around 3.4 times faster
than the MB-/EMB-tree.

14 Kyriakos Mouratidis et al.

 0

 5

 10

 15

 20

 25

 100 200 300 400 500

I/O
 O

pe
ra

tio
ns

 (
in

 th
ou

sa
nd

s)

Data Set Cardinality (in thousands)

MB-tree
EMB-tree

PMD
dPMD

(a) I/O operations

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 100 200 300 400 500

H
as

hi
ng

 o
pe

ra
tio

ns
 (

in
 th

ou
sa

nd
s)

Data Set Cardinality (in thousands)

EMB-tree
dPMD
PMD

MB-tree

(b) Hash computations

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

 100 200 300 400 500

T
ot

al
 T

im
e

(s
ec

on
ds

)

Data Set Cardinality (in thousands)

EMB-tree
MB-tree

PMD
dPMD

(c) Total time

 0

 10

 20

 30

 40

 50

 60

 70

 100 200 300 400 500

T
ot

al
 T

im
e

(s
ec

on
ds

)

Data Set Cardinality (in thousands)

PMD A
PMD E

dPMD A
dPMD E

(d) Estimated vs. actual cost

Fig. 11 Index construction cost

To assess the accuracy of our cost models, we plot in
Figure 11(d) the actual versus the estimated construc-
tion cost, labeled as “A” and “E” in the bar-chart, re-
spectively. The estimations are produced by Formula 2,
taking into account that the average fanout is 87. The
bars in Figure 11(d) depict the total cost, while the black
portion of each bar corresponds to the CPU time (which
is less than 5% of the overall cost). This figure demon-
strates (i) the accuracy of our cost model (deviating by
less than 3% from the actual measurements), and (ii)
that I/O operations contribute more than 95% of the
total construction time. The latter validates our funda-
mental design principle to avoid storing digests that can
be computed on the fly.

Query and Verification Cost. To investigate the query
processing/VO computation performance, we create work-
loads of range queries with selectivity σ varying between
1% and 50%. Figures 12(a) and 12(b) depict the effect
of σ on the number of I/O and hash operations, respec-
tively. The measurements correspond to average values
over 100 randomly generated queries of the desired se-
lectivity. PMD and dPMD require up to 3.5 times fewer
I/Os than their competitors, due to their higher fanout.
PMD and dPMD incur the same I/Os for query pro-
cessing, since they use the same MI. PMD, however, is
slightly better, incurring at most 2 I/Os for VO compu-
tation, versus 5 for dPMD (there are 3 levels in its DI).
This performance gain of around 3 pages is independent
of σ, and is not obvious in the figure. Regarding VO com-

putation, as shown in Figure 12(b), the MB-tree requires
no hashing operations. The runner up is the EMB-tree,
followed by PMD and dPMD. As expected, our methods
involve more digest computations, since they materialize
fewer hashes. This approach pays off, as the overall cost
(shown in Figure 12(c)) is dominated by the I/Os and
follows a trend similar to Figure 12(a).

Figure 12(d) depicts the actual and estimated query
processing time for our methods, and shows its break-
down into I/O and CPU cost. The plot is in logarithmic
scale so that the CPU time (shown as the black portion
at the bottom of each bar) is legible. Our model (For-
mula 5) is very accurate, with an error of less than 4%.
The hashing cost is 1 msec and 1.6 msec for PMD and
dPMD, respectively, corresponding to a small fraction of
the total time.

In addition to query response time, our methods are
also preferable in terms of server-user communication
cost. In Figure 12(b), the number next to each marker
for selectivities 1%, 10%, and 50% indicates the VO size
in bytes. The number of digests inside the VO increases
with the MHT fanout. Thus, our methods construct the
smallest VO, while the MB-tree the largest. The VO of
the EMB-tree includes more digests than PMD/dPMD,
even though it uses binary MHTs too. The reason is that
its embedded MHTs are far from perfect trees, and the
VO spans several of them. In contrast to the VO size, the
verification time at the user side is reduced for a higher
MHT fanout. Thus, the MB-tree requires fewer compu-

Partially Materialized Digest Scheme: An Efficient Verification Method for Outsourced Databases 15

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 0.1 0.2 0.3 0.4 0.5

I/O
 O

pe
ra

tio
ns

Query Selectivity

MB-tree
EMB-tree

dPMD
PMD

(a) I/O operations

 0

 100

 200

 300

 400

 500

 600

 0 0.1 0.2 0.3 0.4 0.5

H
as

hi
ng

 O
pe

ra
tio

ns

Query Selectivity

1831

824

472

511

1950

886

535

554

1988

885

564

564

dPMD
PMD

EMB-tree
MB-tree

(b) Hash computations

 0

 10

 20

 30

 40

 50

 60

 70

 0 0.1 0.2 0.3 0.4 0.5

T
ot

al
 T

im
e

(s
ec

on
ds

)

Query Selectivity

EMB-tree
MB-tree

dPMD
PMD

(c) Total time

 0.001

 0.01

 0.1

 1

 10

 100

0.01 0.05 0.1 0.2 0.5

T
ot

al
 T

im
e

(s
ec

on
ds

)

Query Selectivity

PMD A
PMD E

dPMD A
dPMD E

(d) Actual vs. estimated cost

Fig. 12 Query processing and VO computation cost

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

409620481024512

H
as

hi
ng

 o
pe

ra
tio

ns

Block Size (in bytes)

dPMD
PMD

EMB-tree
MB-tree

(a) Hash computations

 0

 5

 10

 15

 20

 25

409620481024512

T
ot

al
 T

im
e

(s
ec

on
ds

)

Block Size (in bytes)

EMB-tree
MB-tree

dPMD
PMD

(b) Total time

Fig. 13 Query cost vs. block size

tations; for σ = 10%, AC verification takes 0.09 seconds
for MB-tree, and around 0.19 seconds for the other three
methods.

In Figure 13, we investigate the effect of block size B
on the query answering time. We vary B from 512 bytes
to 4 Kbytes, while keeping σ = 10%. Figures 13(a) and
13(b) show the number of hash operations and the total
time. The EMB-tree, PMD and dPMD compute more di-
gests as B increases, since their conceptual MHTs grow.
The MB-tree does not calculate any hashes in all cases.
On the other hand, the I/O cost decreases with B for
all methods. In terms of total time, our techniques are
clearly better. The performance difference from our com-
petitors decreases with B. However, PMD and dPMD
are still 3 times faster for B = 4 Kbytes. Our competi-

tors would become better only for unrealistically large
block sizes (128 Kbytes for the MB-tree and 256 Kbytes
for the EMB-tree, according to the analyses in [17] and
Section 4.2).

The experiments so far do not use a buffer. Figure 14
now studies the performance impact of an LRU buffer.
In Figure 14(a), we plot the overall query processing
and VO creation time (in the default setting) for var-
ious buffer sizes. In each experiment, the buffer size is
the same across all methods, and is expressed as a per-
centage over the size of the largest structure (i.e., MB-
/EMB-tree); e.g., label 10 of the x-axis means that the
buffer contains 1249 pages (10% of the MB-/EMB-tree
size). The percentages next to the measurements rep-
resent the improvement achieved over the case where

16 Kyriakos Mouratidis et al.

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20

T
ot

al
 T

im
e

(s
ec

on
ds

)

Buffer Size (% of EMB-tree size)

5.3%

20.8%

11%

42.6%

16.8%

60.3%

20.1%

80.6%

EMB-tree
MB-tree

dPMD
PMD

(a) Total time (varying buffer size)

 0

 10

 20

 30

 40

 50

 60

 0 0.1 0.2 0.3 0.4 0.5

T
ot

al
 T

im
e

(s
ec

on
ds

)

Query Selectivity

11%

42.6%

10.5%

37.4%

9.7%

35.6%

EMB-tree
MB-tree

dPMD
PMD

(b) Total time (varying selectivity)

Fig. 14 Query cost in the presence of a buffer

 0

 200

 400

 600

 800

 1000

 0 0.1 0.2 0.3 0.4 0.5H
as

hi
ng

 O
pe

ra
tio

ns
 (

in
 th

ou
sa

nd
s)

Update Ratio

EMB-tree
PMD

dPMD
MB-tree

(a) Hash computations

 0

 50

 100

 150

 200

 0 0.1 0.2 0.3 0.4 0.5

T
ot

al
 T

im
e

(s
ec

on
ds

)

Update Ratio

EMB-tree
MB-tree

PMD
dPMD

 0

 5

 10

 15

 20

 0 0.1 0.2 0.3 0.4 0.5

A
ffe

ct
ed

 N
od

es
 (

K
)

(b) Total time

Fig. 15 Batch update cost

no buffer is used. All techniques utilize the buffer and
their cost drops. However, as the buffer size increases,
PMD/dPMD achieve a larger relative improvement com-
pared to MB-/EMB-tree, because a greater fraction of
their (concise) structures stays in main memory. For a
2497-page buffer (the largest tested) our methods are
more than 10 times faster than their competitors. Fig-
ure 14(b) fixes the buffer size at 1249 pages (10% of MB-
/EMB-tree space) and shows the total processing time
for queries of different selectivities. The performance im-
proves, but the trends are similar to Figure 12(c) (i.e.,
without the use of a buffer). PMD/dPMD are around
4.5 times better in all cases.

7.2 Dynamic One-dimensional Data

Update Cost. To investigate the dynamic scenario, we
experiment on two settings; (i) batch updates, and (ii)
mixed query/update workloads. The latter reflects a re-
alistic dynamic scenario where queries and updates are
intermixed.

First, we generate batches of updates, similar to the
experiments in [17]. Each batch contains υ ·N updates,
where parameter υ varies from 1% to 50%; i.e., for de-
fault N = 300K, an υ of 50% implies that there are 150K
updates. The updates are processed simultaneously, shar-

ing computations and I/Os for common affected digests
and index nodes. Figure 15(a) illustrates the number of
hash computations. The MB-tree requires the fewest di-
gest computations, since it performs a single hash oper-
ation per affected node, as opposed to rebuilding entire
embedded or conceptual trees. However, the total update
cost is dominated by the I/O operations and, thus, by the
number of affected nodes. Figure 15(b) shows the overall
update time, whereas the embedded figure depicts the
number of affected nodes per method. In terms of total
cost, dPMD is the best method. Interestingly, PMD per-
forms almost as well as dPMD. The reason is that each
batch of updates affects a large part of the DI in dPMD,
leading to a cost comparable to rewriting the entire DI
in PMD. Both our techniques are up to 3.4 times faster
than the MB-/EMB-tree.

Figure 16 focuses on mixed workloads and assumes
incremental processing (i.e., each update is processed
as soon as it arrives at the server). We create work-
loads of 100 operations, consisting of queries (with σ =
10%) and updates at a predefined ratio ρ. We vary ρ
from 0:100 (updates only) to 100:0 (queries only). Fig-
ure 16(a) shows the number of digest computations, and
Figure 16(b) plots the total time. Even though dPMD
performs the largest number of hashing operations, it is
overall the most efficient method for any ratio, except
for 100:0 (queries only) where PMD is marginally faster.

Partially Materialized Digest Scheme: An Efficient Verification Method for Outsourced Databases 17

 0

 10

 20

 30

 40

 50

 60

100:080:2060:4040:6020:800:100H
as

hi
ng

 O
pe

ra
tio

ns
 (

in
 th

ou
sa

nd
s)

Query/Update Ratio (%)

dPMD
PMD

EMB-tree
MB-tree

(a) Hash computations

 0

 200

 400

 600

 800

 1000

 1200

 1400

0:100 20:80 40:60 60:40 80:20 100:0

T
ot

al
 T

im
e

(s
ec

on
ds

)

Query/Update Ratio (%)

EMB-tree
MB-tree

PMD
dPMD

(b) Total time

Fig. 16 Mixed query/update workload

 1

 10

 100

 1000

 10000

409620481024512H
as

hi
ng

 O
pe

ra
tio

ns
 (

in
 th

ou
sa

nd
s)

Block Size (in bytes)

MR-tree
PMKD

(a) Hash computations

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

409620481024512

T
ot

al
 T

im
e

(s
ec

on
ds

)

Block Size (in bytes)

MR-tree
PMKD

 0

 20

 40

 60

 80

 100

409620481024512

I/O
 O

pe
ra

tio
ns

 (
K

)
(b) Total time

Fig. 17 Spatial index construction cost

Property PMKD MR
Fanout 50 25
Total Size (Kbytes) 17,232 39,204
MI Nodes 16,910 39,204
DI Nodes 322 –
Materialized Hashes 16,422 608,323

Table 4 Index characteristics for spatial data

Another interesting observation is that PMD performs
worse than the MB- and EMB-tree in the 0:100 setting
(updates only), because it modifies/rewrites the entire
DI for every update.

7.3 Spatial Data

In this section, we evaluate our spatial techniques. We
compare the MR-tree and PMKD on a real dataset con-
taining 569,120 two-dimensional points (available at http:
//www.maproom.psu.edu/dcw). PMKD uses an R-tree
as the MI, and a PMD-like DI materialization. Table 4
shows the index characteristics of both methods for block
size B = 1 Kbyte. The MI in PMKD has double the
fanout, and less than half the size of the MR-tree, be-
cause it materializes just a few hashes. The DI (in PMKD)
is very concise, with only 322 Kbytes of verification in-
formation, versus 11,881 Kbytes for the MR-tree.

Figure 17 plots the number of hash operations and
the total time to construct the data-structures, varying
the block size B between 512 bytes and 4 Kbytes. We
observe that PMKD computes more hashes, but due to
its smaller size, it incurs fewer I/Os. The I/Os domi-
nate the overall construction cost and, thus, the PMKD
structures are much faster to build than the MR-tree.

In Figure 18, we investigate the processing cost for
range queries. We fix B to 1 Kbyte and vary the query
selectivity from 0.1% to 1%. For each selectivity, we gen-
erate randomly 100 queries, and present the average mea-
sured values. In Figures 18(a) and 18(b), we show the
number of hashing operations and the total time for pro-
cessing/VO construction. The MR-tree does not com-
pute any hash. Overall, however, (i.e., including the I/O
cost) PMKD is the clear winner, due to its larger fanout.

PMKD is also superior to the MR-tree in terms of
VO size and, thus, server-user communication cost. The
numbers above the bars in Figure 18(a) indicate the VO
size in bytes for both methods; PMKD owes its small
VO to its binary DI (versus a fanout of 25 for the MHT
of the MR-tree). To conclude the empirical study on the
spatial methods, we need to mention that we also eval-
uated them for k-NN queries (implemented in the way
described at the end of Section 6), but we omit the fig-
ures because the observed behaviors are similar to the
range query experiments.

18 Kyriakos Mouratidis et al.

 0

 50

 100

 150

 200

 250

10.750.50.250.1

H
as

hi
ng

 O
pe

ra
tio

ns

Query Selectivity (%)

6069

3230

8662

4770

12034

6515

14380

7871

16417

8995

MR-tree
PMKD

(a) Hash computations

 0

 1

 2

 3

 4

 5

 6

10.750.50.250.1

T
ot

al
 T

im
e

(s
ec

on
ds

)

Query Selectivity (%)

MR-tree
PMKD

 0

 100

 200

 300

 400

 500

 600

10.750.50.250.1

I/O
 O

pe
ra

tio
ns

(b) Total time

Fig. 18 Query processing on spatial data

7.4 Summary of Experimental Results

To summarize, the best method for static data is PMD,
with dPMD being a close runner up. Since the latter is
significantly better for dynamic data, we consider dPMD
to be the best technique overall, due to its generality
and graceful performance on the whole. In the spatial
case, PMKD is the preferred method, confirming that
the PMD methodology retains its advantages in spatial
databases too.

8 Conclusion

In this paper we propose a framework for authenticity
and completeness (AC) verification in outsourced data-
bases. We use separate indexes for the data and the ver-
ification information, and we compress the latter. Our
approach applies to static and dynamic databases. As
opposed to previous work, if a user does not request for
AC guarantees, then the performance of our methods is
similar to an ordinary, non-authenticated index. A the-
oretical analysis and an extensive experimental evalua-
tion indicate that our one-dimensional techniques out-
perform the existing state-of-the-art by a wide margin;
they achieve over 3 times smaller query processing cost,
storage overhead, and index construction time in all ex-
amined settings. Furthermore, we design spatial veri-
fication techniques. We establish the generality of our
methodology showing experimentally that its adaptation
to spatial queries retains its advantages over the conven-
tional approach of combining data and verification infor-
mation in a single index.

A promising direction for future work is the authen-
tication of continuous queries over streaming data. Two
recent methods on this topic [18,28] employ concepts
similar to the MB-/EMB-tree. It would be interesting to
extend our methodology to data streams and compare
with the existing approaches. There are several chal-
lenges arising in this setting, relating primarily to the
highly dynamic nature of the data, the continuous up-
dating of query results and verification objects, and the

fact that processing takes place in main memory, ruling
out I/O considerations.

References

1. Agrawal, R., Srikant, R.: Privacy-preserving data mining.
In: SIGMOD Conference, pp. 439–450 (2000)

2. Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.:
The r*-tree: An efficient and robust access method for
points and rectangles. In: SIGMOD Conference, pp. 322–
331 (1990)

3. de Berg, M., van Kreveld, M., Overmars, M.,
Schwarzkopf, O.: Computational Geometry: Algorithms
and Applications (Second Edition). Springer-Verlag
(2000)

4. Bertino, E., Carminati, B., Ferrari, E.: Merkle tree au-
thentication in uddi registries. Int. J. Web Service Res.
1(2) (2004)

5. Bertino, E., Carminati, B., Ferrari, E., Thuraisingham,
B.M., Gupta, A.: Selective and authentic third-party dis-
tribution of xml documents. IEEE TKDE 16(10), 1263–
1278 (2004)

6. Carminati, B., Ferrari, E., Bertino, E.: Securing xml data
in third-party distribution systems. In: CIKM, pp. 99–
106 (2005)

7. Cheng, W., Pang, H., Tan, K.L.: Authenticating multi-
dimensional query results in data publishing. In: DBSec,
pp. 60–73 (2006)

8. Comer, D.: Ubiquitous b-tree. ACM Comput. Surv.
11(2), 121–137 (1979). DOI http://doi.acm.org/10.1145/
356770.356776

9. Devanbu, P.T., Gertz, M., Martel, C.U., Stubblebine,
S.G.: Authentic third-party data publication. In: DBSec,
pp. 101–112 (2000)

10. Devanbu, P.T., Gertz, M., Martel, C.U., Stubblebine,
S.G.: Authentic data publication over the internet. Jour-
nal of Computer Security 11(3), 291–314 (2003)

11. Guttman, A.: R-trees: A dynamic index structure for spa-
tial searching. In: SIGMOD Conference, pp. 47–57 (1984)

12. Hacigümüs, H., Iyer, B.R., Li, C., Mehrotra, S.: Exe-
cuting sql over encrypted data in the database-service-
provider model. In: SIGMOD Conference, pp. 216–227
(2002)

13. Hacigümüs, H., Mehrotra, S., Iyer, B.R.: Providing da-
tabase as a service. In: ICDE, pp. 29–40 (2002)

14. Hjaltason, G.R., Samet, H.: Distance browsing in spatial
databases. ACM TODS 24(2), 265–318 (1999)

15. Hore, B., Mehrotra, S., Tsudik, G.: A privacy-preserving
index for range queries. In: VLDB, pp. 720–731 (2004)

Partially Materialized Digest Scheme: An Efficient Verification Method for Outsourced Databases 19

16. Korn, F., Pagel, B.U., Faloutsos, C.: On the ’dimension-
ality curse’ and the ’self-similarity blessing’. IEEE Trans.
Knowl. Data Eng. 13(1), 96–111 (2001)

17. Li, F., Hadjieleftheriou, M., Kollios, G., Reyzin, L.: Dy-
namic authenticated index structures for outsourced da-
tabases. In: SIGMOD Conference, pp. 121–132 (2006)

18. Li, F., Yi, K., Hadjieleftheriou, M., Kollios, G.: Proof-
infused streams: Enabling authentication of sliding win-
dow queries on streams. In: VLDB, pp. 147–158 (2007)

19. Martel, C.U., Nuckolls, G., Devanbu, P.T., Gertz, M.,
Kwong, A., Stubblebine, S.G.: A general model for au-
thenticated data structures. Algorithmica 39(1), 21–41
(2004)

20. Merkle, R.C.: A certified digital signature. In: CRYPTO,
pp. 218–238 (1989)

21. Miklau, G., Suciu, D.: Controlling access to published
data using cryptography. In: VLDB, pp. 898–909 (2003)

22. Mykletun, E., Narasimha, M., Tsudik, G.: Authentica-
tion and integrity in outsourced databases. In: NDSS
(2004)

23. Mykletun, E., Narasimha, M., Tsudik, G.: Signature
bouquets: Immutability for aggregated/condensed signa-
tures. In: ESORICS, pp. 160–176 (2004)

24. Narasimha, M., Tsudik, G.: Dsac: integrity for out-
sourced databases with signature aggregation and chain-
ing. In: CIKM, pp. 235–236 (2005)

25. N.I.S.T.: Fips pub 180-1: Secure hash standard. national
institute of standards and technology (1995)

26. Pang, H., Jain, A., Ramamritham, K., Tan, K.L.: Verify-
ing completeness of relational query results in data pub-
lishing. In: SIGMOD Conference, pp. 407–418 (2005)

27. Pang, H., Tan, K.L.: Authenticating query results in edge
computing. In: ICDE, pp. 560–571 (2004)

28. Papadopoulos, S., Yang, Y., Papadias, D.: Cads: Con-
tinuous authentication on data streams. In: VLDB, pp.
135–146 (2007)

29. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for
obtaining digital signatures and public-key cryptosys-
tems. Commun. ACM 21(2), 120–126 (1978)

30. Rizvi, S., Mendelzon, A.O., Sudarshan, S., Roy, P.: Ex-
tending query rewriting techniques for fine-grained access
control. In: SIGMOD Conference, pp. 551–562 (2004)

31. Sion, R.: Query execution assurance for outsourced da-
tabases. In: VLDB, pp. 601–612 (2005)

32. Xie, M., Wang, H., Yin, J., Meng, X.: Integrity auditing
of outsourced data. In: VLDB, pp. 782–793 (2007)

33. Yang, Y., Papadopoulos, S., Papadias, D., Kollios, G.:
Spatial outsourcing for location-based services. In: ICDE
(2008)

