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Abstract. Several applications in areas such as biochemistry, GIS, in-
volve storing and querying large volumes of sequential data stored as
path collections. There is a number of interesting queries that can be
posed on such data. This work focuses on reachability queries: given a
path collection and two nodes vs, vt, determine whether a path from vs

to vt exists and identify it. To answer these queries, the path-first search

paradigm, which treats paths as first-class citizens, is proposed. To im-
prove the performance of our techniques, two indexing structures that
capture the reachability information of paths are introduced. Further,
methods for updating a path collection and its indices are discussed. Fi-
nally, an extensive experimental evaluation verifies the advantages of our
approach.
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1 Introduction

Several applications in various areas involve storing and querying large volumes
of sequential data. For instance, the metabolic networks in biochemistry appli-
cations deal with large collections of pathways, i.e., series of chemical reactions
occurring within a cell [1]. Another example comes from Geographic Information
Systems (GIS) and geodata services, where the recent advances in infrastructure,
and the proliferation of earth observation applications (e.g., GPS technology),
have resulted in the abundance geodata. Path collections are typical in web
sites such as ShareMyRoutes.com, which archive popular touristic routes, i.e.,
sequences of waypoints or points of interest (POIs), uploaded by users.
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These datasets share a common structure. They involve items that connect
with each other to form sequences. In the sequel, we refer to items as nodes
and to sequences as paths. There is a number of interesting queries that can be
posed on path collections. The focus of this work is on reachability queries: given
a path collection and two nodes vs, vt, determine whether a path from vs to vt

exists and identify it. Note that this path need not be present in the collection,
but constructed by combining parts of stored paths. We present two distinct ap-
plication scenarios. Consider a collection of metabolic pathways. In this context,
reachability queries answer whether there exists a cause-effect relationship be-
tween two chemical reactions in some pathway, and their intermediates (i.e., the
reactants). Furthermore, consider an archive of popular touristic routes. Reach-
ability queries answer whether there exists a meaningful/recommended route
between two touristic attractions.

A path collection can be trivially mapped to a graph, where its nodes are
those contained in the paths. Hence, reachability queries can be evaluated by
standard techniques that fall in three categories: (i) search algorithms, e.g.,
depth-first search, (ii) methods based on the pre-computation of the graph’s
transitive closure (TC), or (iii) approaches that pre-process the graph to con-
struct a reachability encoding scheme. These techniques share their strengths
and weaknesses. Exploiting a search algorithm has minimum space requirements
but in the worst case we need to examine all the edges of the graph to answer
a query. Considering the TC of the graph uncompressed is very efficient as far
as querying is concerned, but the complexity of the construction time and the
space requirements make this solution infeasible in practice. Works like 2-hop la-
bels [2] that compress the TC of the graph, or labelling schemes [3–5] have been
proposed to encode the reachability information of the graph. These schemes de-
termine whether there exists a path between two nodes and some of the schemes
can also identify that path.

It is important to note that techniques of the last two categories require pre-
processing and are only efficient for datasets that do not frequently change. In
our setting, however, there are frequent path insertions in the collection dramat-
ically modifying the associated graph and rendering the pre-processed data use-
less. Based on this observation, we introduce the path-first search (pfs) paradigm
for evaluating reachability queries on path collections. Briefly the main idea is
to examine entire paths at once rather than single nodes. We present an in-
dex structure, termed P-Index, that provides efficient access to the paths and
devise the pfsP algorithm, which utilizes it. Then, we present H-graph, a novel
graph-representation of a path collection that captures information about shared
nodes among paths, construct an appropriate index, H-Index, and introduce the
pfsH algorithm. Furthermore, we present methods for updating the index struc-
tures when new paths arrive. Finally we present an extensive experimental study
verifying the advantages offered by our methods.

Outline. Section 2 reviews the literature on evaluating reachability queries on
graphs. Section 3 formally defines the problem of evaluating reachability over
path collections. Section 4 introduces the pfs and pfsP algorithms, and P-Index.



Section 5 introduces the graph-based model of H-graph, defines H-Index and
presents the pfsH algorithm. Section 6 discusses index maintenance. Section 7
presents the experimental study and Section 8 concludes the paper.

2 Related work

The simplest way to evaluate reachability queries is to traverse the graph at query
time exploiting a search algorithm, e.g., depth-first search (dfs). This approach
has minimum space requirements — we store only the adjacency lists of the
graph. On the other hand, to answer a query, we need to search all the edges
in the worst case. In our work, we propose a search method, in the spirit of dfs,
that operates on the paths of a collection instead of the edges of a graph.

Another option is to pre-compute and store the transitive closure (TC) of the
graph. Then, we can explore the encoding scheme in [6] to assign to each node v
a set of triples 〈destination, via, label〉. Entry “via” denotes the first hop in the
path from v to the destination node. At query time, we determine the existence
of a path between two nodes by a single lookup on the encoding scheme and
identify it performing a number of lookups. The problem with this approach lies
in computing the TC of the graph. Efficient algorithms for computing the TC in
relational databases have been proposed, e.g., [7]. Even so, the computation time
of O(|V |3) and the space requirements of O(|V |2) prevent us from applying this
solution especially for large graphs. In our work, we do not pre-process the path
collections to compute all the possible transitions between the nodes. We exploit
a graph-representation of the path collections to capture the possible transitions
between the paths according to their common nodes.

To reduce the storage cost of the TC, Cohen et al. [2] propose 2-hop labels.
They identify a subset of the nodes that best capture the reachability information
of a graph. Thus, for each node v, they construct a list with part of the nodes
that can reach v (Lin[v]) and another one with part of the nodes reachable
from v (Lout[v]). This scheme requires O(|V | ·

√

|E|) space and can determine
the existence of a path between two nodes vs, vt by checking whether Lout[vs]
and Lin[vt] have a common node, the so called center vcenter . To identify the
path from vs to vt, we need to repeat the procedure for the paths from vs

to vcenter and from vcenter to vt. The problem with this approach lies in the
construction cost. Computing the optimal 2-hop cover is NP-hard and requires
the computation of the TC. Therefore after the introduction of 2-hop labels,
a number of works proposed methods to avoid the computation of TC and to
reduce the construction time, e.g., [8] and [9]. In our work, for each node v, we
exploit the common nodes of the paths containing v with the other paths of the
collection to capture the connectivity information of v.

In the context of labelling schemes for graphs, [3] proposes an interval la-
belling scheme. Considering both the spanning tree of the graph, and the re-
maining edges, they assign to each node v a sequence of intervals L[v]. In [5],
Wang et al. introduce Dual-Labeling for sparse graphs. In [10], Trißl et al. in-
troduce GRIPP scheme for large graphs. Finally, the idea in [4] is instead of
constructing the spanning tree of the graph, to partition the graph into a set



of paths P and then create the so called path-tree cover G[T ]. The path-tree
cover is a graph formed by the paths of P (as nodes) and the edges of the initial
graph that are not included in any path. In our work we do not assign labels to
the nodes of the collection for encoding their connectivity information. We index
the paths that contain each node. The graph-based representation of a collection
we present, called H-graph, resembles the one proposed in [4]. However, in [4]
each node is contained in exactly one path, whereas in our work a node can be
included in several paths of the collection. In addition, the edges of H-graph are
formed by the common nodes between the paths.

3 Problem definition

In this section, we formally define the problem of evaluating reachability queries
over a path collection. We introduce the basic aspects of the problem and our
notation for the rest of the paper. We begin by defining the notion of a path
collection over a set of nodes.

Definition 1 (Path). Let V be a set of nodes. A path p(v1, . . . , vk) over V is
a sequence of distinct nodes (v1, . . . , vk) ∈ V . By nodes(p) we denote the set of
nodes in p. The length of a path p, denoted by lp, is the number of contained
nodes, i.e., lp = |nodes(p)|.

Definition 2 (Path collection). Let V be a set of nodes. A path collection
over V , denoted by P, is a set of paths {p1, . . . , pm} over V . By nodes(P) we
denote the set of nodes in P.

Example 1. Figure 1(a) illustrates an example of a path collection P = {p1, p2,
p3, p4, p5} over V = {A, ..., Z}.

p1 (A, B, C, D, J)
p2 (A, F, D, N, B, T )
p3 (N, L, M)
p4 (D, N, B, F, K)
p5 (A, F, K)

(a) (b)

Fig. 1. (a) A path collection P, (b) the underlying graph GP of P.

Next, we define the family of reachability queries over a path collection.

Definition 3 (Reachability queries). Let P be a path collection, and vs, vt be
two nodes in nodes(P). The family of reachability queries deals with the following
problems:

– Determine whether there exists a path from vs to vt. This query is denoted
by reach(vs, vt).

– Identify a path from vs to vt. This query is denoted by path(vs, vt).



In this paper, we deal with the problem of evaluating reachability queries over
path collections. To evaluate reachability queries we exploit only the transitions
between the nodes contained in the paths of the collection. The collections can
be frequently updated with new paths that may involve a number of new nodes.
Therefore, we also have to efficiently deal with massive updates.

Given a path collection P, one can construct a graph that contains all the
reachability information present in P.

Definition 4 (Underlying graph). Let P be a path collection. The underlying
graph of P, denoted by GP(V, E) or simply GP, is a directed graph that contains
all the nodes, V = nodes(P), and all the direct transitions of P, E = { (u, v) :
(. . . , u, v, . . .) ∈ P}.

It is easy to verify that a path collection P over set V and the underlying
graph GP(V, E) are equivalent with respect to reachability queries. For example,
one can answer path(F, C) over the path collection in Figure 1(a) exploiting GP

graph in Figure 1(b). Therefore, a simple solution to the problem is a search
algorithm that exploits the adjacency lists of the graph, with the additional
benefits that it imposes minimum construction cost and deals easily with massive
updates. In the rest of this work, we consider paths to be first class citizens and
propose alternative search-based methods for the task at hand.

4 Evaluating reachability queries over path collections

Section 4.1 introduces the path-first search algorithm, termed pfs, for evaluating
reachability queries over path collections and Section 4.2 discusses optimizations
based on the P-Index structure.

4.1 The path-first search algorithm

The basic idea of the pfs, illustrated in Figure 2, is to examine entire paths at
once rather than single nodes. The algorithm takes the collection P, the source
vs and target node vt as inputs and returns a path connecting them, if one exists,
or null, otherwise. The algorithm employs the following data structures: (i) the
search stack Q, (ii) the history set H, which contains all nodes that have been
pushed in Q, and (iii) the ancestor set A, which stores the direct ancestor of
each node in Q. H is used to avoid cycles and A to extract answer paths. Note
that pfs visits each node once and, thus, there is a single entry per node in A.

The pfs algorithm proceeds similarly to depth-first search as follows. Initially,
the stack Q and H contain source node vs (Lines 1–2). Further, the entry 〈vs, ∅〉
is inserted in A (Line 3) denoting that vs is the source node. The algorithm
proceeds examining the contents of the stack (Lines 4–16). The current top node
vn is popped from Q (Line 5) and checked against target vt. If they are equal the
search terminates and the path is extracted by the ConstructPath method (Line
6). Specifically, starting from vt, ConstructPath uses the ancestor information of
A to backtrack to source vs.



Algorithm pfs
Input: nodes vs and vt of a path collection P

Output: a path from vs to vt

Parameters:
stack Q: // the search stack
set H: // contains all nodes pushed in Q
set A: // contains the direct ancestor of each node in H

Method:

1. push(vs,Q);

2. insert vs in H

3. insert 〈vs, ∅〉 in A;

4. while Q is not empty do

5. let vn = pop(Q);

6. if vn is equal to vt then return ConstructPath(vs, vn,A);

7. for each path p ∈ P containing vn do

8. let vp be the node after vn in p;

9. while vp /∈ H do // access each node vp after vn in p until the first vp contained in H

10. push(vp,Q);

11. insert vp in H;

12. insert 〈vp, v−
p 〉 in A, where v−

p is the direct ancestor of vp in p;

13. let vp be the next node in p;

14. end while

15. end for

16. end while

17. return null;

Fig. 2. Algorithm pfs.

If the target is not found, pfs considers all paths that contain vn and examines
their contents (Lines 7–15). Fix such a path p and let vp denote the node that
follows current top node vn in p (Line 8). Next, a while loop begins checking if
vp has never been pushed in Q (i.e., vp /∈ H). If the check succeeds, vp is pushed
in Q and inserted in H (Lines 10–11). In addition, the entry 〈vp, v

−
p 〉, where

v−p is the direct ancestor of vp in path p, is inserted in A (Line 12). Last, vp is
updated to the next node in p (Line 13) and the while loop continues checking
the new vp. The condition on Line 9 ensures that only nodes that have not been
previously enqueued are inserted in Q; hence, pfs avoids cycles.

Example 2. We illustrate the pfs algorithm for the query path(F, C) on the path
collection of Figure 1(a). Initially, we have (Lines 1–3):

Q = {F}, H = {F} and A = {〈F, ∅〉}.

At the first iteration of the outer while loop, the algorithm pops F from Q
and identifies paths p2, p4 and p5 that contain F .

– When processing p2(A, F, D, N, B, T ), the algorithm adds to Q and H, nodes
D, N , B and T , and to A pairs 〈D, F 〉, 〈N, D〉, 〈B, N〉 and 〈T, B〉.

– When processing p4(D, N, B, F, K), the algorithm adds to Q and H, node
K, and to A pair 〈K, F 〉.

– When processing p5(A, F, K), the algorithm does not add anything to Q, H
and A since there are no new nodes after the current node F (K has been
enqueued).



After the first iteration, we have:

Q = {D, N, B, T, K},
H = {F, D, N, B, T, K} and

A = {〈F, ∅〉, 〈D, F 〉, 〈N, D〉, 〈B, N〉, 〈T, B〉, 〈K, F 〉}.

The algorithm proceeds in a similar manner. After the fourth iteration, we have:

Q = {D, N, C},
H = {F, D, N, B, T, K, C} and

A = {〈F, ∅〉, 〈D, F 〉, 〈N, D〉, 〈B, N〉, 〈T, B〉, 〈K, F 〉 〈C, B〉}.

At the fifth iteration, pfs pops C (the target) from stack Q and terminates
the search. ConstructPath returns answer path (F, D, N, B, C) by scanning A.

Algorithm pfs terminates the search when the target node is popped out of
stack Q. An alternative approach is to check whether both current search node
and the target node are contained in a path of the collection and terminate search
without visiting any other node. In the next section, we discuss this improvement
and present an extension to pfs called pfsP.

4.2 P-Index: indexing path collections

In this section, we describe the path collection index P-Index, an inverted index
on the path collection. We can take advantage of P-Index in two ways: (i) for
accessing all paths that contain current search node (Line 7 in Figure 2), and
(ii) for enforcing a quick termination condition.

Definition 5 (P-Index). The path collection index of P, denoted as P-Index
(P), consists of paths lists for all nodes in P. The list paths[vi] for node vi

contains entries 〈pj:oij〉, where oij indicates the position of vi in pj, for all paths
pj that include vi. The entries are stored sorted by their path identifier pj.

Example 3. Table 1 illustrates the path collection index P-Index(P) for the
collection P presented in Figure 1(a).

node paths list

A 〈p1:1〉, 〈p2:1〉, 〈p5:1〉
B 〈p1:2〉, 〈p2:5〉, 〈p4:3〉
C 〈p1:3〉
D 〈p1:4〉, 〈p2:3〉, 〈p4:1〉
F 〈p2:2〉, 〈p4:4〉, 〈p5:2〉
J 〈p1:5〉
K 〈p4:5〉, 〈p5:3〉
L 〈p3:2〉
M 〈p3:3〉
N 〈p2:4〉, 〈p3:1〉, 〈p4:2〉
T 〈p2:6〉

Table 1. P-Index for the path collection P in Figure 1(a).

We introduce pfsP as an extension to pfs algorithm that exploits P-Index.
Algorithm pfsP identifies all paths that contain a node vn by performing a linear
scan of list paths[vn].



Furthermore, pfsP exploits P-Index to define a fast termination condition.
Assume that node vn has just been popped out (Line 5). The search can be
terminated if there exists a path pc in the collection that contains both vn

and target vt, such that, vt comes after vn. Specifically, pfsP looks for entries
〈pc :onc〉, 〈pc :otc〉 in lists paths[vn], paths[vt] respectively, such that onc < otc.
The procedure is similar to a merge-join that finishes as soon as such a path is
found or one of the lists is traversed to the end.

The pfsP is similar to pfs with the exception that it performs the described
check. The improved termination condition can be included in Figure 2 by chang-
ing Line 6 to:
6. if there is a path pc ∈ P containing vn before vt then

return ConstructPathP(vs, vn, vt,A, pc);

To construct path(vs, vn), ConstructPathP method first calls ConstructPath

(vs, vn,A). Then, it concatenates path(vs, vn) with the part of pc from vn up to vt.
During concatenation the method ensures that each node is contained only once
in the answer path. For example, consider path(A, T ). After joining paths[D] =
{〈p1:4〉, 〈p2:3〉, 〈p4:1〉} and paths[T ] = {〈p2:6〉} lists we identify common path p2.
The ConstructPathP method first constructs path(A, D) = (A, B, C, D) using set
A and then concatenates it with the part of p1(A, F, D, N, B, T ) from D up to
T . Since node B is contained in path(A, D) the answer path is (A, B, T ).

Example 4. We illustrate the pfsP algorithm for the query path(F, C) on the
path collection P of Example 2 exploiting the join procedure of the paths lists.
We use P-Index(P) presented in Table 1.

The first three iterations are identical to the first three iterations of the pfs

algorithm presented in Example 2. Summarizing, after these iterations the stack
and the sets of pfsP are as follows.

Q = {D, N, B},
H = {F, D, N, B, T, K} and

A = {〈F, ∅〉, 〈D, F 〉, 〈N, D〉, 〈B, N〉, 〈T, B〉, 〈K, F 〉}.

At the fourth iteration of the outer while loop, pfsP pops B. To execute Line
6, we join the paths list of current search node B, paths[B] = {〈p1:2〉, 〈p2: 5〉, 〈p4:
3〉} with the paths list for target C, paths[C] = {〈p1 :3〉}. The join procedure
identifies entries 〈p1:2〉, 〈p1:3〉 for common path pc = p1. Since in p1, B is before
C, the search terminates successfully. The answer path (F, D, N, B, C) is the
concatenation of (F, D, N, B) (which corresponds to the path from source F to
current node B and is constructed using set A) and (B, C) (which corresponds
to the part of p1 that connect B to target C).

5 Capturing reachability information using H-graphs

Section 5.1 introduces the H-graph and its associated structure H-Index. Sec-
tion 5.2 discusses the extension of pfs using the H-Index.



5.1 The H-graph and its H-Index

The H-graph provides additional reachability information by identifying shared
nodes and, thus, possible transitions, among paths.

Definition 6 (H-graph). Let P = {p1, ..., pn} be a path collection. The H-graph
of P, denoted by H-graph(P), is a labelled directed graph (V, E) such that V con-
sists of all paths in P and a labelled edge (pi, pj, v) ∈ E if paths pi, pj have a
common node v ∈ nodes(P), termed link, which is neither the first node of pi

nor the last of pj.

Given a path collection P and P-Index(P), H-graph(P) is constructed as
follows. For each node vk ∈ nodes(P) and each pair of entries 〈pi:oki〉, 〈pj:okj〉 ∈
paths[vk], we construct a directed edge from pi to pj in H-graph(P) and label
it with link vk. Intuitively, edge (pi, pj , v) denotes that all nodes in pi before
link vk can reach the nodes after vk in pj. If the link lies in the beginning of pi

or at the end of pj , there is no useful reachability information since no node is
contained before vk in pi or after vk in pj, and hence the edge is omitted from
H-graph.

Example 5. Figure 3(a) illustrates H-graph(P) for the path collection P of Fig-
ure 1(a). To increase readability, multiple edges between the same pair of paths
are collapsed into a single edge with multiple labels. For example, the single
edge from p4 to p2 labelled with N, B, F links corresponds to edges (p4, p2, N),
(p4, p2, B) and (p4, p2, F ). Note that edge (p4, p1, D) is not included since D is
the first node in p4.

(a)

path edges list

p1 〈p2, B:2:5〉, 〈p2, D:4:3〉, 〈p4, B:2:3〉, 〈p4, D:4:1〉
p2 〈p1, D:3:4〉, 〈p1, B:5:2〉, 〈p3, N:4:1〉, 〈p4, F:2:4〉, 〈p4, D:3:1〉,

〈p4, N:4:2〉, 〈p4, B:5:3〉, 〈p5, F:2:2〉
p3

p4 〈p1, B:3:2〉, 〈p2, N:2:4〉, 〈p2, B:3:5〉, 〈p2, F:4:2〉, 〈p3, N:2:1〉,
〈p5, F:4:2〉

p5 〈p2, F:2:2〉, 〈p4, F:2:4〉

(b)

Fig. 3. (a) H-graph (P) of the path collection P in Figure 1(a), (b) H-Index for
H-graph (P).

The H-graph of a path collection P is stored in a modified adjacency list
representation denoted as H-Index.

Definition 7 (H-Index). The H-graph index of P, denoted as H-Index(P),
consists of edges lists for all paths in P. The list edges[pi] for path pi has
entries of the form 〈pj , vk :oki :okj〉, for each (pi, pj , vk) edge of H-graph(P),
where oki (okj) denotes the position of the link vk in path pi (pj). Entries are
sorted primarily by the path pj of the outgoing edge, and secondarily by oki.

Example 6. Figure 3(b) illustrates the H-Index(P) of the H-graph(P) presented
in Figure 3(a).



5.2 The pfsH algorithm

The H-graph captures intersections among paths, and hence contains additional
information about nodes’ reachability compared to that included in the paths
alone. To illustrate this, consider node F of path p2 and node C of path p1 of the
collection in Figure 1(a). The information in H-Index suffices to show that a path
from F to C exists. In particular, the entry 〈p1, B:5:2〉 of edges[p2] in H-Index
denotes that there is way from p2 to p1 via B. Further, from P-Index one derives
that B is after F in p2 and before C in p1. Hence a path (F, D, N, B, C) can be
constructed by combining paths p2 and p1.

The above observation is the main idea of pfsH algorithm. Consider the query
path(vs, vt) and assume that current search node is vn. For each path pi that
contains vn, the algorithm checks whether an edge (pi, pj , vk) in H-graph satisfies
three conditions: (i) pj contains the target node vt, (ii) link vk is after current
search node vn in pi, and (iii) vk is before vt in pj . If these hold, a path from vn

to target vt, via vk exists, and thus a path from source vs to vt can be found.
Algorithm pfsH is similar to pfs with the exception that it introduces two ter-

mination conditions. First, before initializing stack Q and sets H, A in Figure 2
(Lines 1-3), the algorithm checks whether there exists a path pc in the collection
containing source vs before target vt. To perform this check pfsH exploits the
join procedure of paths[vs] and paths[vt] lists introduced for pfsP in Section 4.2.
If a path pc is identified the search terminates and the ConstructPathP method
returns the part of pc from vs to vt as the answer path.

Otherwise, as soon as a new path pi containing current search node vn in
position oni is examined (after Line 7 in Figure 2), pfsH checks whether there
exists an edge (pi, pj, vk) in H-graph satisfying the aforementioned three condi-
tions. The algorithm scans lists edges[pi] and paths[vt] from H-Index(P) and
P-Index(P), respectively, similar to a merge-join as both are sorted on the path
identifier. The scan terminates when 〈pj , vk :oki :okj〉 in edges[pi] and 〈pj :otj〉
in paths[vt] match, i.e., correspond to the same path pj (condition (i)), and
additionally oki > oni (condition (ii)) and okj < otj (condition (iii)).

When a qualifying entry 〈pj , vk : oki : okj〉 in edges[pi] is found, pfsH first
constructs path(vs, vn), calling ConstructPath(vs, vn,A), and then concatenates
it with the part of pi from vn to vk and the part of pj from vk to vt.

For a more detailed presentation of pfsH algorithm see [11].

Example 7. We illustrate the pfsH algorithm for the query path(F, C) on the
path collection of P of Example 2. Algorithm pfsH exploits H-Index(P) pre-
sented in Figure 3(b) and P-Index(P) of Table 1.

First, we check whether exists a path in P containing source F before target
C. The join between paths[F ] = {〈p2:2〉, 〈p4:4〉, 〈p5:2〉} and paths[C] = {〈p1:3〉}
lists results in no common path. Thus, we need to further search the collection.

At the first iteration of the outer while loop, pfsH pops F . Node F is contained
in paths p2(A, F, D, N, B, T ), p4(D, N, B, F, K) and p5(A, F, K). Then, we check
the termination condition for paths p2, p4 and p5 and perform a join of the
corresponding edges list with paths[C] = {〈p1 : 3〉}. The join of edges[p2] =



{〈p1, D:3:4〉, 〈p1, B:5:2〉, 〈p3, N :4:1〉, 〈p4, F :2:5〉, 〈p4, D:3:1〉, 〈p4, N :4:2〉, 〈p4, B:5:
3〉, 〈p5, F :2:2〉} with paths[C] = {〈p1:3〉} results in common path p1 (condition
(i)) with the link B of (p2, p1, B) edge contained after F in p2 (condition (ii))
and before C in p1 (condition (iii)). Thus, the answer path is (F, D, N, B, C).

6 Updating path collections

Updating a path collection involves adding new paths. To include a new path
pj in a collection, we need (a) to insert the entry 〈pj :oij〉 in paths[vi] for each
node vi contained in pj (update P-Index), and (b) to update edges[pj] and the
edges lists of the paths containing each node in pj (update H-Index).

In practice, path collections are usually very large to fit in main memory.
Therefore, both P-Index and H-Index of a collection are stored as inverted files
on secondary storage and maintained mainly by batch, offline updates. In other
words, we usually update the collection with a set of new paths. A requirement
for the inverted files to work efficiently is to store the inverted lists, like paths and
edges lists, in a contiguous way on secondary storage. Due to this requirement the
näıve solution to deal with each new path separately is not efficient for updating
the collection. A common approach to this problem is to built a P-Index and an
H-Index considering the new paths as inverted indices in main memory and to
exploit them for evaluating the queries in parallel with the disk-based P-Index
and H-Index of the collection.

Each time a set of new paths arrives, we update only the memory-based
indices with minimum cost. Then, to update the disk-based indices, there are
three possible strategies ([12]): (a) rebuilding them from scratch using both the
old and the new paths, (b) merging them with the memory resident ones and
(c) lazily updating the paths and the edges lists when they are retrieved from
disk during query evaluation. In our work, we adopt the second strategy for
updating the disk-based indices.
Procedure updateMP
Inputs: memory-based P-Index(P) MP , set of new paths U
Output: updated memory-based P-Index(P) MP
Method:

1. for each new path pj in U do

2. for each node vk in p do

3. append 〈pj:okj〉 entry at the end of paths[vk] in MP ;

4. end for

5. end for

Procedure mergeP
Inputs: updated memory-based P-Index(P) MP , disk-based P-Index(P) DP
Output: updated disk-based P-Index(P) DP
Method:

1. for each node v in MP do

2. append contents of paths[v] of MP at the end of paths[v] of DP ;

3. write new paths[v] on DP ;

4. end for

Fig. 4. Procedures for updating P-Index.

Figures 4 and 5 illustrate the procedures for updating the memory-based in-
dices with the new paths (Procedures updateMP and updateMH) and the merging



procedures of the disk-based indices with the memory-based ones (Procedures
mergeP and mergeH). Procedures updateMP and updateMH work similarly with
the procedures for creating disk-based P-Index and H-Index respectively, from
scratch. Especially for updateMH, we also need to create entries considering both
the new paths and the existing paths of the collection (Lines 6-9). Finally, Pro-
cedures mergeP and mergeH merge disk-based paths and edges lists respectively
with the memory resident ones, and then write the new lists on disk.

Procedure updateMH
Inputs: updated memory-based P-Index(P) MP , disk-based P-Index(P) DP , memory-based
H-Index(P) MH
Output: updated memory-based H-Index(P) MH
Method:

1. for each node vk in MP do

2. for each pair of entries 〈pi:oki〉, 〈pj:okj〉 in paths[vk] of MP do

3. if oki > 1 and okj < lpj
then insert 〈pj , vk:oki:okj〉 in edges[pi ] of MH;

4. if okj > 1 and oki < lpi
then insert 〈pi, vk:okj:oki〉 in edges[pj ] of MH;

5. end for

6. for each pair of entries 〈pi:oki〉, 〈pj: okj〉 where pi ∈ paths[vk] of MP and pj ∈ paths[vk] of

DP do

7. if oki > 1 and okj < lpj
then insert 〈pj , vk:oki:okj〉 in edges[pi ] of MH;

8. if okj > 1 and oki < lpi
then insert 〈pi, vk:okj:oki〉 in edges[pj ] of MH;

9. end for

10. end for

Procedure mergeH
Inputs: updated memory-based H-Index(P) MH, disk-based H-Index(P) DH
Output: updated disk-based H-Index(P) DH
Method:

1. for each path p in MH do

2. merge edges[p] of DH with edges[p] of MH;

3. write new edges[p] on DH;

4. end for

Fig. 5. Procedures for updating H-Index.

7 Experiments

We present an experimental evaluation of our methods demonstrating their effi-
ciency. We compare the pfsP and pfsH algorithms against conventional depth-first
search which operates on the underlying graph GP, indexed by adjacency lists.
All indices, i.e., P-Index and H-Index for the collections, and the adjacency
lists for GP, are implemented as inverted files using the Berkeley DB storage
engine. All algorithms are implemented in C++ and compiled with gcc. The
experimental evaluation was performed on a 3 Ghz Intel Core 2 Duo CPU.

For updating the adjacency lists of GP graph, we adopt an approach similar
to the one for P-Index and H-Index. In addition, we choose not to check whether
the new paths contain a transition between two nodes more than once or if a
transition is already included as an edge in GP graph. Instead, duplicates are
removed while merging the disk-based adjacency lists with the memory-based
ones. This approach allows for fast updates on the adjacency lists and GP graph,
at the expense of increased main memory utilization.

We generate synthetic path collections to test the methods. We identify five
experimental parameters: (a) |P|: the number of paths in the collection, (b) lavr:



the average path length, (c) |V |: the number of distinct nodes in the paths, (d)
zipf : the order of Zipfian distribution of node frequency, and (e) U : the up-
date factor. The path collections contain 50000 up to 500000 paths. The average
length of each path varies between 5 to 30 nodes. Path collections include 10000
up to 500000 distinct nodes. Note that varying the number of nodes in the collec-
tion also affects the number of link (common) nodes and the possible transitions
between the paths. Node frequency is a moderately skewed Zipfian distribution
of order zipf that varies from 0 up to 0.8. Note that nodes with high frequency
are contained in a lot of paths. An update factor U means that there are U%· |P|
new paths to be added to the collection P. Table 2 summarizes all parameters.

We perform four sets of experiments to show the effects on the size and the
construction time of the indices, as well as on the performance of the algorithms
for evaluating 5000 random reachability queries. In each set, we vary one of |P|,
lavg, V , zipf while we keep the remaining three parameters fixed to their default
values (see Table 2). In the fifth set of experiments, we study the updates of the
path collections. We vary only the U parameter while we set the remaining four
fixed to their default values.

parameter values default value

|P| 50000, 100000, 500000 100000
lavg 5, 10, 30 10
|V | 10000, 50000, 100000, 500000 100000
zipf 0, 0.3, 0.6, 0.8 0.6

U 1%, 5%, 10% -

Table 2. Experimental parameters

Varying the number of paths in the collection. Figure 6(a) illustrates the
effect on the index size. We note that in all cases, H-Index requires at least one
order of magnitude more space than the other two indices. P-Index is slightly
larger than the adjacency lists. As |P| increases all indices require more disk
space. The size of the adjacency lists increases, because the path collections
include more direct transitions between path nodes resulting in more dense GP

graphs. As expected P-Index requires more space since each node is contained in
more paths and therefore, the length of the paths lists increases. Finally, as |P|
increases, the paths have more nodes in common, which means that the length
of the edges lists increases too. Thus, H-Index also requires more disk space.
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Fig. 6. (a) Index size, and (b) construction time varying |P|, for lavg = 10, |V | =
100000, zipf = 0.6.

Figure 6(b) shows the effect on the construction time of the indices. As |P|
increases the construction of all indices takes more time. We notice that the



creation time of the adjacency lists is almost one order of magnitude higher
than the time for P-Index, in all cases. This is due to the fact that, we first
need to construct GP graph by removing repeated transitions between nodes.
On the other hand, the construction time of H-Index is always approximately
one order of magnitude higher than the time of the other indices.
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Fig. 7. (a) Average execution time, (b) average number of visited nodes, (c) average
number of disk pages read varying |P|, for lavg = 10, |V | = 100000, zipf = 0.6.

Figure 7(a) presents the effects of |P| on the query execution time. In all
cases, the average execution time of pfsP and pfsH is lower than that of dfs. pfsP

is always almost one order of magnitude faster than dfs. pfsH is two orders of
magnitude faster than dfs. As |P| increases, the execution time of dfs increases
too. This is expected since GP graph becomes more dense. In contrast, pfsP is
less affected by the increase of |P|, whereas the execution time of pfsH decreases.
This is because, the length of the paths lists in P-Index and the edges lists in
H-Index increases and it is very likely that the join procedures in pfsP and pfsH

will identify common paths. Thus pfsP and pfsH, in all cases, need to visit fewer
nodes to answer a query as Figure 7(b) shows. Figure 7(c) confirms the above
observations with respect to the number of I/Os.

Varying the average length of the paths in the collection. Figure 8(a)
shows the effects of lavg on the disk space required to store indices. Similarly
to the case of increasing |P|, we notice that the size of H-Index is more than
one order of magnitude larger compared to the size of the adjacency lists of GP

graph. In contrast, P-Index is slightly larger than the adjacency lists. As lavg

increases, there are more direct transitions between path nodes. Thus, GP graph
becomes more dense and its adjacency lists contain more nodes. Finally, as (a)
the lavg increases, and (b) |V | remains fixed, the number of occurrences in the
paths for each node increases. This results to longer paths lists in P-Index and
to longer edges lists in H-Index too, because there exist more common nodes
between paths. Therefore, the space needed to store P-Index and H-Index also
increases.

Figure 8(b) shows the effect on the construction time of the indices. The
creation of all indices takes more time as lavg increases. Similarly to the case of
varying |P|, the construction time of the adjacency lists is higher than the time
of P-Index, since we first need to construct GP graph by removing the repeated
transitions between the nodes. The construction time of H-Index is always at
least one order of magnitude higher than the time of the other indices.
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Fig. 8. (a) Index size, and (b) construction time varying lavg, for |P| = 100000, |V | =
100000, zipf = 0.6.
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Fig. 9. (a) Average execution time, (b) average number of visited nodes, (c) average
number of disk pages read varying lavg, for |P| = 100000, |V | = 100000, zipf = 0.6.

Figure 9(a) presents the effects of varying lavg on the query execution time.
The experimental results show that the average execution time of pfsP and pfsH

is lower than that of dfs in all cases. Moreover, as lavg increases, the execution
time of dfs increases, whereas the execution time of pfsP and pfsH decreases. dfs

becomes slower because the density of GP increases. On the other hand, the join
procedures in pfsP and pfsH will quickly identify a common path, since paths
and edges lists become longer. Thus, both pfsP and pfsH need to visit fewer
nodes to answer a query as Figure 9(b) shows. Figure 7(c) confirms the above
findings with respect to the number of I/Os.

Varying the number of nodes in the path collection. Figure 10(a) il-
lustrates the effects on the index size. As |V | increases the adjacency lists and
P-Index require more disk space. In the case of the adjacency lists, this is be-
cause GP becomes larger and more lists need to be stored. Similarly, the size of
P-Index also grows as |V | increases, since it contains more paths lists. On the
other hand, H-Index requires less disk space as |V | increases, because the paths
have fewer common nodes and thus, the edges lists become shorter. Note that
the total number of edges lists does not change as |P| is fixed to 100000.

Figure 10(b) shows the impact of varying |V | on the construction time of
the indices. As |V | increases the construction of the adjacency lists of GP and
P-Index takes more time. Similarly to the previous experiments, the construc-
tion time for the adjacency lists is higher since we need to construct GP graph
first. On the hand, the construction of H-Index takes less time since the edges
lists become shorter.
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Fig. 10. (a) Index size, and (b) construction time varying |V |, for |P| = 100000, lavg =
10, zipf = 0.6.
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Fig. 11. (a) Average execution time, (b) average number of visited nodes, (c) average
number of disk pages read varying |V |, for |P| = 100000, lavg = 10, zipf = 0.6.

Figure 11(a) illustrates the effect of varying |V | on the query execution time.
All three algorithms are affected by the increase of |V |. Algorithms pfsP and pfsH

are, in all cases, faster than dfs but the difference in the execution time decreases
as |V | increases. The performance of dfs is expected because GP becomes larger
as |V | increases. Considering pfsP and pfsH, since (a) the collections include more
nodes and (b) the number of paths is fixed, each node is contained in fewer paths
and in addition, the paths have less nodes in common. In other words, since the
paths lists of P-Index and edges lists of H-Index become shorter, they will
likely have fewer common paths. Thus, both pfsP and pfsH need to visit more
nodes to answer the queries as Figure 11(b) shows. Figure 11(c) confirms the
above observations with respect to the number of I/Os.

Varying node frequency in the path collection. Figure 12(a) illustrates
the effects on the index size. As expected, the increase of zipf does not affect
the size of the adjacency lists. The total number of direct transitions between
the nodes of the collection, i.e., the edges in GP graph, does not change as zipf
increases. The increase of zipf does not change the total number of entries of
the paths lists in P-Index, and therefore the size of P-Index remains the same.
On the other hand, the size of H-Index increases. As zipf value increases some
nodes can act as links for more paths of the collection. Thus, the edges lists
become longer and the size of H-Index increases.

Figure 12(b) shows the impact of varying the number of nodes in the collec-
tion on the construction time of the indices. As expected the construction time
for the adjacency lists and P-Index is not affected by the increase of zipf . In
contrast, as |V | increases the construction time of H-Index increases.



1

10

100

1000

10000

100000

0 0.3 0.6 0.8
I
n
d
e
x

s
iz

e
(
M

B
)

zipf

H-Index

� �

�

�

�
P-Index

+ + + +

+
adj. lists

♦ ♦ ♦ ♦

♦

0.1

1

10

100

1000

10000

0 0.3 0.6 0.8

C
o
n
s
t
r
u
c
t
io

n
t
im

e
(
s
e
c
)

zipf

H-Index

� �

�

�
�

adj. lists

♦ ♦ ♦ ♦

♦

P-Index

+ + + +

+

(a) (b)
Fig. 12. (a) Index size, and (b) construction time varying zipf , for |P| = 100000,
|V | = 100000, lavg = 10.
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Fig. 13. (a) Average execution time, (b) average number of visited nodes, (c) average
number of disk pages read varying zipf , for |P| = 100000, |V | = 100000, lavg = 10.

Figure 13(a) shows the effect of varying zipf on the query execution time.
We notice that the execution time of pfsP and pfsH is always lower than the
execution time of dfs. Algorithm pfsH is faster than pfsP for approximately one
order of magnitude for zipf < 0.8. As expected the execution time of dfs remains
approximately stable since GP does not change as zipf increases, whereas the
execution time of pfsP and pfsH increases. The increase in the case of pfsP is less
intense. Figure 13(b) shows that pfsP visits slightly more nodes as zipf increases.
On the other hand, pfsH visits fewer nodes as zipf increases but retrieving the
edges lists of the paths that contain very frequent nodes, costs a lot. Figure 13(c)
confirms the above observations with respect to the number of I/Os.

Updating path collections. Finally, we study the methods for updating path
collections. We measure: (a) the time required to update memory-based indices
considering the new paths, and (b) the time needed to merge the disk-based
indices with the memory-based ones.
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Fig. 14. (a) Updating time varying U , (b) index size varying U for |P| = 100000,
lavg = 10, |V | = 100000, zipf = 0.6.



Figure 14(a) illustrates the time required to update the memory-based in-
dices. The updating time of H-Index is higher than the time of the adjacency
lists and P-Index in all cases. This is due to the fact that we need to access the
edges lists of the disk-based H-Index to update the memory-based one. On the
other hand, in all cases P-Index and the adjacency lists are updated in equal
time. Finally, Figure 14(b) shows that the time needed to merge the disk-based
H-Index is higher than the time required for the adjacency lists and P-Index.

8 Conclusions

We consider reachability queries on path collections. We proposed the path-first
search paradigm, which treats paths as first-class citizens, and further discussed
appropriate indices that aid the search algorithms. Methods for updating a path
collection and its indices were discussed. An extensive experimental evaluation
verified the advantages of our approach. Our ongoing work focuses on compres-
sion techniques for H-Index. In the future, we plan to extend our indexing meth-
ods to other types of queries, such as shortest path, nearest neighbor queries.
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