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Abstract. In the k-medoid problem, given a dataset P, we are asked to choose k 
points in P as the medoids. The optimal medoid set minimizes the average 
Euclidean distance between the points in P and their closest medoid. Finding 
the optimal k medoids is NP hard, and existing algorithms aim at approximate 
answers, i.e., they compute medoids that achieve a small, yet not minimal, 
average distance. Similarly in this paper, we also aim at approximate solutions. 
We consider, however, the continuous version of the problem, where the points 
in P move and our task is to maintain the medoid set on-the-fly (trying to keep 
the average distance small). To the best of our knowledge, this work constitutes 
the first attempt on continuous medoid queries. First, we consider centralized 
monitoring, where the points issue location updates whenever they move. A 
server processes the stream of generated updates and constantly reports the 
current medoid set. Next, we address distributed monitoring, where we assume 
that the data points have some computational capabilities, and they take over 
part of the monitoring task. In particular, the server installs adaptive filters (i.e., 
permissible spatial ranges, called safe regions) to the points, which report their 
location only when they move outside their filters. The distributed techniques 
reduce the frequency of location updates (and, thus, the network overhead and 
the server load), at the cost of a slightly higher average distance, compared to 
the centralized methods. Both our centralized and distributed methods do not 
make any assumption about the data moving patterns (e.g., velocity vectors, 
trajectories, etc) and can be applied to an arbitrary number of medoids k. We 
demonstrate the efficiency and efficacy of our techniques through extensive 
experiments.  

Keywords: Medoid Queries, Continuous Query Processing, Moving Object 
Databases. 



 2

1   Introduction 

Given a dataset P and a user-specified parameter k, a k-medoid query returns a subset 
of P consisting of k points. These points are called the medoids and are selected so 
that the average distance between the points in P and their closest medoid is 
minimized. The k-medoid problem arises in many fields and application domains, 
including resource allocation, data mining, spatial decision making, etc. Consider the 
example in Figure 1.1, where P = {p1, ..., p24} is the set of residential blocks in a city, 
and fire stations are to be opened at three of them. To achieve the shortest average 
response time to emergency calls, we should minimize the average distance between 
residential blocks and their closest station. In this case, the best blocks to open fire 
stations at are the k = 3 medoids of P. In our example, the medoids are blocks p6, p15 
and p22, shown in grey. The lines in the figure signify the assignment of the residential 
blocks to their responsible (i.e., closest) fire station. Due to this implicit assignment, 
k-medoids have also been used in different contexts for partitioning clustering.   
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Figure 1.1: A 3-medoid example 

Computing an optimal medoid set is NP hard [GJ79], and only approximate 
answers are possible even for relatively small input datasets. To this end, existing 
methods range from theoretical approximation schemes (e.g., [ARR98]), to hill-
climbing approaches for moderate size datasets (e.g., [KR90, NH94]), to heuristic-
based algorithms for disk-resident data (e.g., [EKX95a, EKX95b, MPP]). All 
previous methods assume a static P, i.e., they compute the k medoids once and then 
terminate. In this paper, we address a dynamic version of the problem, where the 
points in P send frequent location updates and the medoid set needs to be 
continuously maintained. In accordance with most real-world scenarios, the points in 
P move arbitrarily, with unknown motion patterns.  We term the problem continuous 
medoid monitoring.   

As a medoid monitoring example, consider a number of users accessing a location 
based service through their mobile devices, e.g., cellular phones or PDAs. To reduce 
the communication cost (and, thus, energy consumption), a number k of supernodes 
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are selected among the mobile devices; the supernodes collect, aggregate and forward 
to the location server messages received from their vicinity. Due to signal attenuation 
for long distances, the devices should be close to some supernode. In other words, the 
supernode selection essentially reduces to a k-medoid computation over the set of 
devices. Additionally, the mobile nature of the system requires on-the-fly medoid 
maintenance. All the devices (supernodes or not) move frequently and arbitrarily, 
necessitating supernode re-assignment in order to retain the quality of service. 

We consider two system models, corresponding to different mobile environments. 
First, we address centralized medoid monitoring. In this setting, the data objects1 in P 
send updates to a central server whenever they move. The server processes the 
location updates and computes/reports the new medoid set. We propose two 
incremental monitoring algorithms that aim at minimizing the processing time for 
medoid maintenance. In the centralized model, the objects issue frequent location 
updates. This raises the additional concern about the communication cost. In 
particular, in many mobile computing applications, the objects have scarce power 
resources and we wish to preserve battery life by limiting the number of messages 
transmitted to the server. This motivates our second, distributed processing model. In 
this context, the server assigns safe regions to the data objects, which issue location 
updates only if they move outside their region. We design effective safe region 
computation strategies and incorporate them to our medoid monitoring framework. 
We demonstrate that the distributed methods drastically reduce the object 
communication overhead, while sacrificing minimal medoid quality (i.e., they result 
in marginally higher average distance compared to their centralized counterparts).    

The rest of the paper is organized as follows. Section 2 reviews related work. 
Section 3 describes our two centralized methods, while Section 4 presents their 
distributed versions. Section 5 experimentally evaluates the performance of our 
algorithms. Finally, Section 6 concludes the paper. 

2   Related Work 

In this section, we survey previous work on medoid queries (in Section 2.1), focusing 
on solutions targeted at large datasets. We also review spatial query monitoring 
techniques (in Section 2.2), since we assume a similar system architecture and use 
related geometric techniques and indexes. 

2.1   Medoid Queries 

Finding the k-medoids is a classic problem in Computational Geometry, where it is 
usually referred to as the k-medians problem. Since it is NP hard, several 
approximation schemes have been proposed for its solution (e.g., [ARR98]). These 
schemes are of theoretical nature, aiming at graceful asymptotic bounds. More 
practical solutions include hill-climbing algorithms, such as PAM and CLARA 

                                                            
1 Henceforth, the terms point and object are used interchangeably. 
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[KR90]. Starting with a randomly chosen k-medoid set, these methods consider 
swapping one medoid with another, randomly chosen data point. If the swap leads to 
a lower average distance, then the resulting medoid set becomes the new candidate 
answer. This procedure is repeated for a fixed number of possible swaps. It terminates 
when no considered swap achieves a lower distance than the current medoid set, and 
returns the latter as the solution. To achieve better scalability than PAM and CLARA, 
Ng and Han [NH94] propose CLARANS. It builds upon CLARA, examining 
however a smaller set of possible swaps, and, thus, speeding up the execution (i.e., 
converging faster to a local minimum). CLARANS is still slow for large problem 
instances (being restricted to inputs of just a few thousand objects), and it is 
impractical for disk-resident data. Motivated by this fact, Ester et al. [EKX95a, 
EKX95b] design FOR. In FOR, dataset P is indexed with an R-tree [G84, BKSS90], 
and a sample is formed by drawing one data point from each leaf of the R-tree. FOR 
executes CLARANS on this sample and returns the computed medoids. Focused also 
on disk-resident data, Mouratidis et al. [MPP] propose TPAQ, a method that solves k-
medoid and related problems. TPAQ assumes that P is indexed with an R-tree and 
exploits its grouping properties to avoid reading the entire dataset, while achieving a 
low average distance. To exemplify, consider dataset P = {p1, ..., p24} in Figure 2.1a 
and its R-tree in Figure 2.1b.  
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Figure 2.1: Example R-tree and TPAQ execution for 3-medoid computation 

Assume that TPAQ is posed with a 3-medoid query. It descends the R-tree from 
the root down to the topmost level that contains more than (or equal to) k entries. This 
level is called the partitioning level, and let E denote the set of its entries. In Figure 
2.1, the partitioning level is the second one, and its entries are E = {N3, ..., N9}. The 
entries in E are sorted according to their center’s Hilbert value, and the resulting 
sorted list is divided into k groups Si of equal cardinality (i.e., |E|/k entries each). The 
sorted list in our example (as given by the Hilbert curve shown in Figure 2.1a) is N6, 
N7, N8, N9, N5, N4, N3, and the 3 groups are S1 = {N6, N7}, S2 = {N8, N9}, and S3 = {N5, 
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N4, N3}. For each Si, TPAQ computes the geometric centroid2 si and performs a 
nearest neighbor (NN) search at si among the underlying data points (i.e., among the 
points corresponding to the sub-trees of entries in Si). In Figure 2.1a, the centroids of 
the three groups are points s1, s2, and s3 (appearing hollow). The three medoids 
returned are their NNs, i.e., points p15, p22, and p6. TPAQ is shown to achieve lower 
distance than FOR and exhibits better scalability. 

The existing k-medoid algorithms are unsuitable for our continuous monitoring 
setting. All aforementioned methods are designed for static datasets and snapshot 
queries (i.e., they compute the medoids once and then terminate); their extension to 
incremental medoid maintenance (in the presence of updates) is non-trivial, if 
possible at all. On the other hand, the naïve approach of re-computing from scratch 
the medoids (with some existing algorithm) in each update processing cycle is 
prohibitively expensive in a highly dynamic scenario, failing to reuse previous results. 
Additional problems of existing methods are: (i) the hill-climbing approaches (PAM, 
CLARA, CLARANS, etc.) are very slow for moderate or large input sizes, while (ii) 
TPAQ and FOR are designed for disk-resident data, with primary objective the 
minimization of the I/O cost; disk accesses are not an issue in our main memory 
setting, where CPU time (and communication cost, in the distributed case) is the only 
concern. On the other hand, an important finding of previous work to our problem is 
the efficiency and, more so, the efficacy of TPAQ, which motivates us to use a similar 
Hilbert-based (or, in general, space filling curve-based) approach for our purposes. 

Regarding medoid-related problems in dynamic settings, Guha et al. [GMM+03] 
solve the k-medoid problem in a streaming environment. In the assumed model, the 
points of the input dataset P stream into the system. The main memory is not enough 
to store entire P, so the streamed data points are processed once and then discarded as 
new ones arrive. When the entire input set is seen, the system reports its k-medoids. 
[GMM+03] proposes an one-pass k-medoid algorithm that solves the above problem, 
using a small amount of space. Even though this is a dynamic method, it does not 
apply to our setting; in our case, (i) the memory does fit the entire dataset, but the 
points therein receive location updates in an on-line fashion, and (ii) the system needs 
to continuously report the k-medoid set at any time. 

A problem related to k-medoids is min-dist optimal-location (MDOL) computation. 
The input consists of a set of data points P, a set of existing facilities (i.e., a set of 
existing medoids) and a user-specified spatial region R, wherein a new facility should 
open. The output of an MDOL query is the location in R where the new facility 
should be built in order to minimize the overall average distance between the data 
points and their closest facility. Zhang et al. [ZDXT06] propose an exact method for 
this problem. The main differences from the k-medoid problem is that (i) MDOL 
assumes that a set of facilities already exists, (ii) it computes a single point (as 
opposed to k), and (iii) the returned point does not necessarily belong to P, but it can 
be anywhere inside region R.  

The k-medoid problem is related to clustering; essentially, given the medoids, the 
input dataset can be partitioned into k clusters by assigning each point to its closest 
medoid. The other direction, however, does not work; although there are numerous 

                                                            
2 The geometric centroid of group Si is point si  with coordinates si.x and si.y equal to the 

average x- and y- coordinates, respectively, of the entry centers in Si. 
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clustering methods for large input sets (e.g., DBSCAN [EKSX96], BIRCH [ZRL96], 
CURE [GRS98] and OPTICS [ABKS99]), their objective is to create clusters such 
that the points in any cluster are more similar to each other than to points in other 
clusters. In addition to addressing a problem of different nature, most clustering 
algorithms are computationally intensive and unsuitable for the highly dynamic 
environments we tackle in this work. 

2.2   Continuous Spatial Queries 

The first spatial monitoring techniques were targeted at range queries, where the data 
objects send location updates to a central server, and the latter continuously reports 
the objects that fall in each monitored range. Q-index [PXK+02] processes static 
range queries. It indexes the ranges using an R-tree and probes moving objects against 
the index in order to determine the affected queries and update their results. SINA 
[MXA04] monitors (potentially moving) range queries using a three-step spatial join 
between moving objects and ranges. Mobieyes [GL04] and MQM [CHC04] follow a 
distributed processing approach, where the objects utilize their computational 
capabilities and suppress some location updates. In particular, all of Q-index, 
Mobieyes and MQM utilize the concept of safe regions, according to which each 
object p is assigned a circular or rectangular region, such that p needs to issue an 
update only if it exits this area (because, otherwise, it does not influence the result of 
any query). Figure 2.2 shows a range monitoring example, where the current result of 
query Q1 is object p1, of Q2 is object p2, while no object qualifies queries Q3, Q4, Q5. 
The safe regions for p1 and p4 are circular, while for p2 and p3 they are rectangular, as 
shown in the figure (the safe rectangle for p2 coincides with the boundary of Q2). Note 
that even if the objects move, unless they fall outside their assigned safe regions, no 
query result can change.  
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Figure 2.2: The safe regions concept 

In addition to rage queries, several methods have been recently proposed for k 
Nearest Neighbor (k-NN) monitoring. Koudas et al. [KOTZ04] present a system for 
approximate k-NN queries over streams of multidimensional points. Yu et al. 
[YPK05], Xiong et al. [XMA05] and Mouratidis et al. [MHP05] describe algorithms 
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for exact k-NN queries; all three methods index the data with a regular grid and 
maintain the k-NN results by considering only object movements that may influence 
some query. The aforementioned techniques aim at low processing time. There exist, 
however, methods designed for network cost minimization [MPBT05, HXL05] by 
exploitation of the objects’ computational resources; their rationale is similar to that 
of the safe regions explained in Figure 2.2.  

3   Centralized Medoid Monitoring 

In this section we present our centralized methods. We assume that dataset P consists 
of |P| two-dimensional points. Although our methods are applicable to higher 
dimensions, in accordance with most real-world mobile environments, we focus on 
two dimensions. Furthermore, for ease of presentation, we consider a unit dataspace, 
i.e., all data fall in [0,1]2. Every point p in P is a tuple of the form <p.id, p.x, p.y>, 
where p.id is a unique identifier and (p.x, p.y) are p’s coordinates. Whenever p moves, 
it issues an update to the monitoring server; the update has the form <p.id, p.xold, 
p.yold, p.xnew, p.ynew>3, implying that p moves from (p.xold, p.yold) to (p.xnew, p.ynew). The 
objects move frequently and arbitrarily.  

We present two centralized medoid monitoring algorithms, based on a common 
intuition exemplified in Figure 3.1. Dataset P contains two clusters C1 and C2. 
Suppose that a 2-medoid query returns one medoid in C1 and another in C2. Now 
consider that we wish to compute three medoids. Observe that, although C1 has a 
smaller diameter than C2, it contains more points. Due to the larger cardinality of C1, 
the distances of its points from its medoid affect the global average distance to a 
greater extent than that of the points in C2. Therefore, placing the third medoid in C1 
leads to a larger distance reduction than placing it in C2. Intuitively, more medoids 
must be assigned to denser areas of the dataspace. 

C1

C2

medoids

 

Figure 3.1: The three medoids of a dataset consisting of two clusters 

Motivated by this observation, our algorithms (i) partition the points in P into k 
groups of (roughly) equal cardinality and, then, (ii) select the most centrally located 
object from each group as the corresponding medoid. To quickly perform step (i) we 
project the points on a one-dimensional space using a space filling curve. We employ 
the Hilbert curve since it is shown to best preserve locality compared to alternatives 
[MJFS01]. Next, we partition the Hilbert-sorted list of points into k groups of equal 

                                                            
3 If the update is an insertion (deletion), p.xold, p.yold (p.xnew, p.ynew) are set to a negative value. 
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cardinality (i.e., |P|/k). Due to the locality preservation of the Hilbert curve, the 
resulting groups can be regarded as well-defined partitions of P in the two-
dimensional space. Finally, we extract a medoid from each group; the medoid is the 
point in the group with the median Hilbert value, as it is expected to be the most 
centrally located. The above rationale underlies both modules of our algorithms, 
namely, the initial medoid computation and their maintenance. 

3.1   The HBM algorithm 

Our first method is Hilbert-based Monitoring (HBM). It indexes the data objects with 
an in-memory 2-3 B+-Tree [C79] (i.e., a B+-Tree where each internal node has two or 
three children), using their Hilbert values as search keys. We denote this tree by BT. 
At the leaf level, except for the standard right sibling pointers, BT is modified to also 
accommodate left sibling pointers. In other words, the leaves are organized as a 
doubly connected linked list. When the continuous medoid query is installed at the 
server for the first time and BT is built, every entry E in an internal node N 
temporarily stores aggregate information about the number of points E.a contained in 
its subtree. E.a facilitates the initial medoid computation and is discarded afterwards.  

In particular, according to our general approach, the i-th medoid of P is the [(i-
0.5)·|P|/k]-th object in the linear order imposed by the Hilbert values. HBM locates 
the k medoids by performing k traversals in BT, at a total cost of O(k·log|P|). Before 
each traversal i, an auxiliary variable V is initialized to zero. The traversal starts from 
root NR and it checks whether V+E1.a is larger than or equal to (i-0.5)·|P|/k, where E1 
is NR’s first entry. If that is the case, the medoid is located in E1’s subtree and, 
therefore, the traversal continues by visiting E1’s child. Otherwise, E1.a is added to V 
and the algorithm continues similarly by checking V+E2.a against (i-0.5)·|P|/k (E2 is 
NR’s second entry). V always keeps the number of points preceding (in the Hilbert 
order) the point with the smallest search key that is reachable by the traversal. Finally, 
the algorithm reaches the leaf node containing the i-th medoid. For every computed 
medoid m, an array M of size k stores a tuple of the form <m.id, m.hv, m.ptr, m.off>, 
where m.id is the identifier of the point selected as m, m.hv is m’s Hilbert value, m.ptr 
points to the leaf node of BT that accommodates m, and m.off is an integer (initialized 
to zero) used by the maintenance module and whose functionality is explained later. 
The temporary E.a values are discarded after the end of the initial computation step. 
Figure 3.2 summarizes the data structures in HBM. 

2-3 B+ -Tree (BT)

M

<mi.id, mi.hv, mi.ptr, mi.off>

1 2 ... i ... k  

Figure 3.2: The data structures of the HBM method 
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The server periodically receives updates from the objects in batches. HBM 
accordingly updates BT, after computing the necessary Hilbert values of the inserted, 
deleted or moving points. Note that the movement of an object involves its deletion 
from the index followed by its subsequent re-insertion with the new Hilbert value. 
Whenever a split or merge operation moves a medoid m to a different leaf node, the 
corresponding m.ptr must also be altered in M. While updates are reflected in BT, 
HBM stores some book-keeping information, to be used for result maintenance 
according to its medoid selection strategy. In particular, after processing the 
insertion/deletion of a point p, HBM performs a binary search in array M to locate the 
leftmost medoid mu with Hilbert value greater than (or equal to) p.hv. In case p 
initiated an insertion (deletion), the algorithm increases (decreases) mu.off by one. 
Particular care must be taken when a medoid m is deleted. In this case, HBM 
substitutes it with its predecessor in the Hilbert order and decreases m.off by one. 

After processing all updates, HBM computes the new medoids as follows. The i-th 
medoid mi was formerly data point pold at position (i-0.5)·|P|/k. After the updates, pold 
moves to position (i-0.5)·|P|/k + Σi-1

j=1 mj.off. The actual medoid must be located at 
position (i-0.5)·|P΄|/k, where P΄ is the updated version of dataset P (which may have 
different cardinality if new objects were inserted or existing ones deleted). Therefore, 
the new medoid mi can be found OFFi = (i-0.5)·|P΄|/k - (i-0.5)·|P|/k -  Σi-1

j=1 mj.off 
positions to the right or left of pold in the linear order, depending on whether OFFi is 
positive or negative, respectively. For every medoid mi in M, HBM first visits the leaf 
node pointed by mi.ptr to find its old corresponding point pold. Then, using the 
left/right sibling pointers of BT, it locates the new medoid and properly updates mi’s 
entry in M. The pseudocode of the maintenance procedure is given in Figure 3.3. 
 
Function updateMedoids (array M, Tree T) 
1. Initialize V to 0 
2. For i=1 to k 
3. Locate medoid mi in leaf M[i].ptr of T 
4. OFFi = (i-0.5)·|P΄|/k - (i-0.5)·|P|/k - V 
5. If OFFi = = 0, continue 
6. Else if OFFi > 0, find point p located |OFFi| positions to the right of mi 
7. Else if OFFi < 0, find point p located |OFFi| positions to the left of mi 
8. V += M[i].off; 
9. Assign p.id, p.hv, the pointer of the leaf of T that accommodates p and 0 to M[i].id, 

M[i].hv, M[i].ptr and M[i].off, respectively 

Figure 3.3: The maintenance module of HBM 

Figure 3.4 illustrates the initial computation and maintenance of k = 2 medoids in a 
set of points, which at timestamp T1 has cardinality 14. For ease of demonstration, we 
omit the BT operations and focus on the leaf level of the tree, which constitutes a 
doubly connected linked list of points sorted on their Hilbert values. At timestamp T1, 
the set is subdivided into two subsets of seven points each. The medians of the subsets 
(p4 and p12) are selected as the medoids (m1 and m2, respectively). At timestamp T2, 
four updates occur; p1 and p13 are deleted, and p3 and p5 move to new positions. Due 
to p1’s deletion, m1.off is decreased by one. On the contrary, the deletion of p13 does 
not affect any off value because there is no medoid with higher (or equal) Hilbert 
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value. Regarding p3 and p5, recall that a point movement is handled as a deletion 
followed by an insertion. Upon p3’s deletion, the algorithm decreases m1.off. 
Subsequently, the point is re-inserted in a position between m1 and m2 and, therefore, 
m2.off is increased by one. Finally, p5’s movement causes m2.off to decrease (due to its 
deletion) and immediately increase (due to its re-insertion) by one, because both its 
old and new Hilbert values are between m1.hv and m2.hv. Let old_posi be the position 
(in the Hilbert order) of the point that was selected as medoid mi at timestamp T1. 
Also let curr_posi be the position of the new point to become mi at timestamp T2. For 
m1, old_pos1 = 4, curr_pos1 = 3, and OFF1 = 1. Similarly for m2, old_pos2 = 11, 
curr_pos2 = 9, and OFF2 = -1. The algorithm locates the new medoids p3 and p11, by 
moving one position to the right and one to the left from old medoids p4 and p12, 
respectively.  
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Updates:
DEL  p 1, m1.off--
DEL  p 13

MOV p3, m1.off--, m2.off++
MOV p5, m2.off--, m2.off++

p2 p4 p3 p6 p7 p5 p8 p10 p11 p12 p9 p14

Hilbert Order
Subset 1 Subset 2

m1 m2
OFF1 = curr_pos1 - old_pos1 -

m1.off = 3-4-(-2)=1
OFF2 = curr_pos2 - old_pos2 -

(m1.off+m2.off) = 9-11-(-2+1)=-1  

Figure 3.4: A medoid monitoring example in HBM 

3.2   The GBM algorithm 

The Grid-based Monitoring (GBM) algorithm utilizes a C×C regular grid for indexing 
P. Let δ be the side-length of each cell. A point p in P with coordinates (p.x, p.y) can 
be located in constant time in cell ci,j (i.e., the cell in column i and row j, starting from 
the low-left corner of the grid), where i = ⎣p.x/δ⎦ and j = ⎣p.y/δ⎦. GBM imposes a 
linear order on the cells by sorting them according to the Hilbert values of their 
centers. Every cell c is associated with a tuple <c.n, c.prev, c.next, c.BT>, where c.n is 
the cardinality of the set of points contained in c, c.prev and c.next are the cells 
preceding and succeeding c in the Hilbert order respectively, and c.BT is a BT that 
indexes the points in c (using their Hilbert values as search keys). Similarly to HBM, 
the internal nodes in the BTs temporarily incorporate aggregate information, which is 
discarded after the initial computation of the medoids.  



 11

The grouping strategy of GBM is similar to HBM, the difference being in the 
linear order of the points, which now takes into account firstly the order of the cells. 
Specifically, the points are considered sorted according to the following rules; (i) a 
point p1 in cell c1 precedes point p2 in cell c2, if c1 precedes c2 in their Hilbert order, 
and (ii) the order of the points in the same cell is determined by their Hilbert values. 
Following similar reasoning as in HBM, the i-th medoid mi is the [(i-0.5)·|P|/k]-th 
object in the above order. GBM starts by initializing an auxiliary variable V to zero 
and scans the linked list of the (sorted) cells. To locate medoid mi, in every visited cell 
ci, it checks whether V+ci.n is larger than or equal to (i-0.5)·|P|/k. If that is the case, it 
traverses ci.BT in order to find the [V+ci.n-(i-0.5)·|P|/k]-th object in the cell, which is 
then selected as medoid mi. Otherwise, it adds ci.n to V and continues to the next cell. 
V keeps the number of points encountered by the scan so far. Note that GBM locates 
all medoids in a single linear scan of the cells, i.e., after finding medoid mi, it does not 
restart the scan for finding mi+1; instead, it continues from the cell that contains mi. 
Finally, it maintains an array M with functionality identical to that used by HBM. 
Figure 3.5 depicts the data structures of GBM. 

 

M

<mi.id, mi.hv, mi.ptr, mi.off >

1 2 ... i ... k

c.BT
c

c.prev

c.next

c.n

 

Figure 3.5: The data structures of the GBM method 

For every received update, GBM first determines in constant time the cell c where 
the insertion/deletion takes place, and properly updates c.BT. Subsequently, it scans M 
and updates the off value of the leftmost medoid with Hilbert value larger than or 
equal to that of the object that initiated the update, in a similar fashion to HBM. After 
processing all the updates, the maintenance module of GBM identifies the points to be 
selected as the new medoids as follows. It scans M and for every mi, it computes OFFi 
in a fashion similar to Section 3.1. Suppose that mi lies in cell c. Then, starting from 
the leaf of c.BT that accommodates mi and is pointed by mi.ptr, it searches for the 
point that will be selected as the new mi. This point lies OFFi positions to the left or 
right of old mi, depending on whether OFFi is negative or positive, respectively. If the 
search reaches the leftmost or rightmost (in the Hilbert order) point of cell c, it 
continues to the cell pointed by c.prev or c.next, respectively. Note that the algorithm 
may skip entire cells (i.e., it may not traverse their BTs at all), since it can always 
determine whether mi is located in a visited cell by comparing the cell’s cardinality 
against OFFi. After finding a new medoid, GBM updates the respective entry in M 
accordingly. 

In Figure 3.6 we exemplify the initial medoid computation and monitoring in a 
scenario where k = 2 and P contains points p1 to p14. Consider cells c2,2 and c1,2 at 
timestamp T1. The Hilbert curve first passes through c2,2 and, thus, p11 precedes p1 in 
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the GBM order, although it succeeds it in the global Hilbert order (i.e., p11.hv > p1.hv, 
where p11.hv and p1.hv are the Hilbert values of p11 and p1, respectively). At 
timestamp T1, the medoids are m1 = p4 and m2 = p14, since they are at positions 
0.5·|P|/k = 4 and 1.5·|P|/k = 11, respectively, in the linear order. At timestamp T2, 
objects p7, p6 and p11 issue updates, as shown in the figure. Their movement leads to 
OFF1 = 1 and OFF2 = 1, and updates the medoids to m1 = p7 and m2 = p11. 

 

p1
p2

p3

p4

p6
p5

p7

p8

p9

p10p11

p12

p13

p14

p3 p5 p6 p4 p2 p11 p1 p13 p12 p10 p14 p7 p 8p9

c1,1 c2,1 c2,2 c3,3 c3,2 c3,1c1,2 c4,2

p3 p5 p4 p7 p2 p1 p13 p12 p10 p14 p11 p9 p8 p6

c1,1 c2,1 c2,2 c3,3 c3,2 c3,1c1,2

Updates:
MOV p7, m2.off++
MOV p6, m1.off--
MOV p11, m2.off--

m1 m2

Timestamp T1

OFF1 = curr_pos1 - old_pos1 -
m1.off = 4-4-(-1)=1

OFF2 = curr_pos2 - old_pos2 -
(m1.off+m2.off) = 11-11-(-1+0)=1

p1
p2

p3

p4

p6p5

p8

p9

p10

p11

p12

p13

p14

Timestamp T2

p7

c1,1 c2,1 c3,1

c1,2 c2,2 c3,2

c1,3 c2,3 c3,3

c1,1 c2,1 c3,1

c1,2 c2,2 c3,2

c1,3 c2,3 c3,3

Figure 3.6: A medoid monitoring example in GBM 

Compared to HBM, index update and medoid maintenance in GBM are expected 
to be faster. HBM keeps a common BT over all |P| points, which leads to an O(log|P|) 
cost for every point insertion or deletion. On the other hand, letting c be the cell of the 
inserted/deleted point, c.BT contains c.n objects (where c.n << |P|), requiring 
O(log|c.n|) time per update. Furthermore, maintaining the medoids is also more 
efficient in GBM, because for large OFFi values, entire cell contents may be skipped 
when sliding in the linear point order towards the new medoid position. Another 
major advantage of GBM over HBM, is the fact that its data index is compatible with 
existing methods for other spatial query types; most range and nearest neighbor 
monitoring algorithms use a regular grid index4. This allows GBM to be used in 
conjunction with other methods, in a system that answers general spatial queries over 
moving objects, utilizing a single data index.  

A final remark concerns the average distance, which is in general different but 
similar for GBM and HBM, since their medoid selection rationale is alike. In 
particular, if the grid granularity in HBM is selected so that C is a power of two 
(recall that the grid has C×C cells), their medoids are identical. The reason is that the 
Hilbert values themselves are computed by definition based on a transparent space 
partitioning with a grid, whose granularity on each axis is always a power of two (this 
power is called the order of the Hilbert curve). If C is also a power of two, the cells of 
the object grid contain continuous, non-overlapping intervals of the curve. In other 
words, if cell c1 precedes c2 on the curve, then any point p1 in c1 precedes every p2 in 
c2. In turn, this fact implies that the linear point orders of GBM and HBM are 
identical and, thus, the medoids are the same. 

                                                            
4 All methods covered in Section 2.2 use a regular grid, except for [MPBT05] and [HXL05], 

where processing time minimization is not the main objective. 
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4   Distributed Medoid Monitoring 

The main idea in the distributed version of our methods is to allow objects to move 
within assigned safe regions, without having to transmit updates to the server. Since 
our general medoid selection strategy relies on a linear point order, the safe regions 
are defined with respect to the neighboring objects (in the order). Particularly, let 
leeway λ be an integer system parameter. The safe region of the i-th object in the 
order pi is a Hilbert interval SRλ

i  = [pi.srL, pi.srR]. The left boundary pi.srL is the mean 
of the Hilbert values of pi and its λ-th left neighbor pi-λ (i.e., pi.srL = ⎣(pi.hv +             
pi-λ.hv)/2⎦). The right boundary pi.srR is set similarly with respect to the λ-th right 
neighbor (i.e., pi.srR = ⎡(pi.hv + pi+λ.hv)/2⎤). Object pi may change location without 
issuing an update, as long as pi.hv ∈ SRλ

i . When pi does move outside SRλ
i , it sends its 

new location to the server. The latter updates its index and the medoid set 
accordingly5, and assigns a new safe region to pi. Note that the new SRλ

i  is defined 
based on the latest point positions reported. Particularly for GBM, the linear point 
order takes into account the grid cells ordering. Thus, the safe regions are defined 
within each cell individually (i.e., in the Hilbert order of the objects therein). 
Whenever an object exits its cell, it sends an update regardless of whether it violates 
its safe region. 

Figure 4.1 demonstrates the safe region function in the case of HBM (the case of 
GBM is similar, subject to the aforementioned modifications), showing the position of 
the points on the Hilbert curve. At timestamp T1, the safe region SRλ=1

3  (SRλ=2
3 ) of p3 is 

defined according to p2 and p4 (p1 and p5) for λ = 1 (λ = 2). Similarly, SRλ=1
4  is 

determined by p3 and p5. Assuming that λ = 1, at timestamp T2, points p3 and p4 move. 
However, only p3 issues an update, because p4 remains within its safe region. The 
solid points in the figure correspond to the positions known by the server, the hollow 
point is p3’s old Hilbert value, while the grey is p4’s actual one. Object p3 is assigned 
a new region, based on the Hilbert values of p2 and p4. Note that the server is not 
aware of the new location of p4 and, thus, uses the last reported one (as of T1). 
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56
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6
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22 48
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Figure 4.1: Safe regions and update handling 

                                                            
5 Medoid maintenance at the server side is identical to the centralized case. 
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5   Experimental Evaluation 

In this section we evaluate the performance of our methods, in terms of processing 
time (at the server), number of object updates (i.e., communication cost for the 
objects) and achieved average distance. We generate datasets of cardinality |P| 
ranging between 10K and 200K objects as follows. For each tested |P|, we randomly 
select the initial position and the destination of each object among the points of a real 
spatial dataset (North America, available at www.maproom.psu.edu/dcw). The object 
follows a linear trajectory between the two points. Upon reaching the endpoint, a new 
random destination is selected and the process is repeated. At every timestamp, a 
percentage a of the objects move towards their endpoint (while the remaining ones 
remain static), covering a distance v. We refer to a and v as the object agility and 
velocity, respectively. The velocity is expressed as a percentage of the dataspace 
extent on the x axis (we have a [0,104]×[0,104] dataspace). The simulation length is 
100 timestamps for each setting, and the reported measurements are the average 
observed values over all timestamps. We process continuous k-medoid queries for k 
between 2 and 512. We evaluate our four methods HBM, GBM, dHBM, and dGBM 
(where the latter two are the distributed versions of HBM and GBM). Also, we use as 
a competitor the TPAQ method with a main memory R-tree, since none of the other 
existing algorithms works for the large cardinalities tested, even for snapshot queries. 
To adapt TPAQ to medoid monitoring, we rerun it for the timestamps where (i) some 
of the medoids move, or (ii) the object updates affect the extents of the R-tree entries 
at the partitioning level. In each experiment we vary one parameter, while setting the 
remaining to their default values. The parameter ranges and defaults are shown in 
Table 5.1. For GBM and dGBM we fine-tuned the grid granularity (with respect to 
the average distance) for the default settings and use the best one (100×100) in all our 
experiments. We use a machine with a 3.2 GHz Pentium IV CPU and 1 GB RAM.  

Parameter Default Range 
Dataset cardinality |P| 100K 10, 50, 100, 150, 200 (K) 
No. of medoids k 32 2, 8, 32, 128, 512 
Agility a 50% 10, 30, 50, 70, 100 (%) 
Velocity v 0.5% 0.1, 0.3, 0.5, 0.7, 1 (%) 
Leeway λ 300 100, 200, 300, 400, 500 

Table 5.1: Parameter ranges and default values 

In Figure 5.1, we measure the effect of object cardinality |P|, varying it from 10K 
to 200K objects and setting the other parameters to their defaults. Figure 5.1a shows 
the CPU cost (in logarithmic scale) for medoid maintenance per timestamp, i.e., the 
time to update the object index and the medoids. We observe that the centralized 
methods have similar cost (with GBM being slightly faster). The distributed 
algorithms have shorter running time, because they process fewer updates; dHBM 
(dGBM) takes less than 45% (60%) of the time of its centralized counterpart. dHBM 
is faster than dGBM, because the latter’s safe regions are practically smaller, as they 
are bounded by the grid cell boundaries (leading to more reported updates and, thus, 
higher processing cost). Compared to our methods, TPAQ is slower by an order of 
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magnitude, mainly due to the excessive update cost of its R-tree index. An important 
remark about Figure 5.1a (and all remaining CPU time charts) is that we focus on 
pure maintenance cost, i.e., we exclude the initial k-medoid computation. For the sake 
of completeness, the first-time medoid extraction for the default setting takes 12.9, 
12.4 and 54.4 sec for HBM, GBM and TPAQ, respectively (the times for dHBM and 
dGBM are identical to HBM and GBM).  

HBM GBM dHBM dGBM TPAQ centralized dHBM dGBM HBM GBM dHBM dGBM TPAQ 
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Figure 5.1: Performance versus dataset cardinality |P| 

Figure 5.1b shows the number of updates sent to/processed by the server in the 
same experimental setup. All centralized methods (i.e., HBM, GBM, TPAQ) have the 
same communication cost, with the objects reporting their positions whenever they 
move. On the other hand, the safe regions of dHBM and dGBM save around 55% and 
40% of these updates, respectively. dGBM avoids less updates than dHBM, due to the 
necessary updates required when the objects move to another cell, as explained in the 
context of Figure 5.1a. Figure 5.1c illustrates the achieved distance for the various 
cardinalities, expressed in distance units in our [0,104]×[0,104] dataspace. We observe 
that the distributed methods compute only slightly worse medoid sets, verifying their 
efficacy. Note that both versions of GBM are better than those of HBM. The reason is 
that HBM is solely based on the one-dimensional Hilbert mapping, while GBM 
preserves a stronger connection to the original (two-dimensional) space, due to its 
spatial grid index. For a similar reason, TPAQ achieves 4 to 11% smaller distance 
than our methods, exploiting the graceful grouping properties of its R-tree. However, 
this benefit comes to a prohibitive update cost, leading to an excessive processing 
time (see Figure 5.1a). Another remark for TPAQ is that it improves with |P|; for a 
denser space, the nearest neighbor queries (in its final step) retrieve medoids that lie 
closer to the “ideal” geometric centroids of the k groups, leading to a lower distance. 

In Figure 5.2 we use the default settings and vary k between 2 and 512. Figure 5.2a 
shows the CPU time. Again dGBM is the fastest, for the reasons explained above. We 
observe that the processing cost is almost constant for each method and unaffected by 
k. The reason is that, in all methods (and especially in TPAQ), the monitoring cost is 
dominated by the number of processed updates (mainly due to index maintenance), 
which is irrelevant to k.  Furthermore, in our algorithms, for larger k, there are more 
medoids to maintain, but the offsets (to slide in the linear point order) are smaller. On 
the other hand, the average distance drops with k for all methods, and our techniques’ 
difference from TPAQ decreases.      
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Figure 5.2: Performance versus number of medoids k 

In Figure 5.3 we examine the effect of object agility a, with 10% up to 100% of the 
data points moving at each timestamp. The CPU cost (Figure 5.3a) increases with a 
due to the larger number of updates processed. Figure 5.3b shows the number of 
issued updates, which, as expected, is linear to a. In terms of average distance (Figure 
5.3c), there is not much fluctuation; the small differences are due to the randomness 
of the dataset generation.  
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Figure 5.3: Performance versus object agility a 

In Figure 5.4 we vary the object velocity v from 0.1 to 1% of the dataspace extent 
on the x dimension. Figure 5.4a shows the CPU time. The centralized methods are 
unaffected by v. On the other hand, the cost of the decentralized increases as more 
objects move outside their safe regions for larger v, sending more updates to the 
server for processing. This is also evident in Figure 5.4b. Interestingly, for v = 0.1%, 
dGBM incurs less object updates than dHBM (because its cells are large with respect 
to v, without practically limiting the safe regions), while for v = 1% their number is 
almost as high as for the centralized methods. The average distance (Figure 5.4c) is 
similar for all values of v. 
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Figure 5.4: Performance versus object velocity v 
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Figure 5.5 investigates the effect of the leeway λ, varying it from 100 to 500. The 
performance of the centralized methods is identical, because they do not use safe 
regions. As shown in Figure 5.5b, for λ = 500, dHBM achieves 65% reduction of the 
location updates. For dGBM, however, there is a marginal decrease, because the safe 
regions are restricted by the grid cells, rather than by λ. The number of updates has a 
direct impact on the CPU time and, thus, the trends in Figure 5.5a are similar as in 
Figure 5.5b. In terms of average distance, λ affects only dHBM, whose performance 
deteriorates for larger λ. This trend verifies the tradeoff between update cost and 
medoid quality. On the other hand, dGBM is not affected because the server processes 
a similar set of updates.         
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Figure 5.5: Performance versus leeway λ 

6   Conclusion 

In this paper we address the problem of k-medoid monitoring. To the best of our 
knowledge this is the first work on this topic. We consider a central server that 
continuously receives the locations of frequently moving objects and incrementally 
maintains their medoid set. Without making any assumption about the data moving 
patterns, our methods achieve low running times while keeping the medoid quality 
high. Furthermore, we consider distributed environments, where the data objects have 
limited power resources and attempt to preserve them by reducing the number of 
updates they transmit to the server. In this context, the server assigns safe regions to 
the objects, which report their position only when they exit their region. We evaluate 
our methods through extensive experiments and investigate tradeoffs between 
communication cost and medoid quality.  
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