
 1

Continuous Medoid Queries over Moving Objects

Stavros Papadopoulos 1, Dimitris Sacharidis 2, and Kyriakos Mouratidis 3

1 Department of Computer Science and Engineering
Hong Kong University of Science and Technology

Clear Water Bay, Hong Kong
stavros@cse.ust.hk

2 School of Electrical and Computer Engineering

National Technical University of Athens
Greece, 15780

dsachar@dblab.ntua.gr

3 School of Information Systems
Singapore Management University

Singapore, 178902
kyriakos@smu.edu.sg

Abstract. In the k-medoid problem, given a dataset P, we are asked to choose k
points in P as the medoids. The optimal medoid set minimizes the average
Euclidean distance between the points in P and their closest medoid. Finding
the optimal k medoids is NP hard, and existing algorithms aim at approximate
answers, i.e., they compute medoids that achieve a small, yet not minimal,
average distance. Similarly in this paper, we also aim at approximate solutions.
We consider, however, the continuous version of the problem, where the points
in P move and our task is to maintain the medoid set on-the-fly (trying to keep
the average distance small). To the best of our knowledge, this work constitutes
the first attempt on continuous medoid queries. First, we consider centralized
monitoring, where the points issue location updates whenever they move. A
server processes the stream of generated updates and constantly reports the
current medoid set. Next, we address distributed monitoring, where we assume
that the data points have some computational capabilities, and they take over
part of the monitoring task. In particular, the server installs adaptive filters (i.e.,
permissible spatial ranges, called safe regions) to the points, which report their
location only when they move outside their filters. The distributed techniques
reduce the frequency of location updates (and, thus, the network overhead and
the server load), at the cost of a slightly higher average distance, compared to
the centralized methods. Both our centralized and distributed methods do not
make any assumption about the data moving patterns (e.g., velocity vectors,
trajectories, etc) and can be applied to an arbitrary number of medoids k. We
demonstrate the efficiency and efficacy of our techniques through extensive
experiments.

Keywords: Medoid Queries, Continuous Query Processing, Moving Object
Databases.

 2

1 Introduction

Given a dataset P and a user-specified parameter k, a k-medoid query returns a subset
of P consisting of k points. These points are called the medoids and are selected so
that the average distance between the points in P and their closest medoid is
minimized. The k-medoid problem arises in many fields and application domains,
including resource allocation, data mining, spatial decision making, etc. Consider the
example in Figure 1.1, where P = {p1, ..., p24} is the set of residential blocks in a city,
and fire stations are to be opened at three of them. To achieve the shortest average
response time to emergency calls, we should minimize the average distance between
residential blocks and their closest station. In this case, the best blocks to open fire
stations at are the k = 3 medoids of P. In our example, the medoids are blocks p6, p15
and p22, shown in grey. The lines in the figure signify the assignment of the residential
blocks to their responsible (i.e., closest) fire station. Due to this implicit assignment,
k-medoids have also been used in different contexts for partitioning clustering.

p

1 p
2

p
3

p4

p5

p20

p
19

p
18

p
17

p16

p15

p14

p13

p12

p11

p10

p
9p

8

p
7

p6

p22

p
23

p
21

p24

Figure 1.1: A 3-medoid example

Computing an optimal medoid set is NP hard [GJ79], and only approximate
answers are possible even for relatively small input datasets. To this end, existing
methods range from theoretical approximation schemes (e.g., [ARR98]), to hill-
climbing approaches for moderate size datasets (e.g., [KR90, NH94]), to heuristic-
based algorithms for disk-resident data (e.g., [EKX95a, EKX95b, MPP]). All
previous methods assume a static P, i.e., they compute the k medoids once and then
terminate. In this paper, we address a dynamic version of the problem, where the
points in P send frequent location updates and the medoid set needs to be
continuously maintained. In accordance with most real-world scenarios, the points in
P move arbitrarily, with unknown motion patterns. We term the problem continuous
medoid monitoring.

As a medoid monitoring example, consider a number of users accessing a location
based service through their mobile devices, e.g., cellular phones or PDAs. To reduce
the communication cost (and, thus, energy consumption), a number k of supernodes

 3

are selected among the mobile devices; the supernodes collect, aggregate and forward
to the location server messages received from their vicinity. Due to signal attenuation
for long distances, the devices should be close to some supernode. In other words, the
supernode selection essentially reduces to a k-medoid computation over the set of
devices. Additionally, the mobile nature of the system requires on-the-fly medoid
maintenance. All the devices (supernodes or not) move frequently and arbitrarily,
necessitating supernode re-assignment in order to retain the quality of service.

We consider two system models, corresponding to different mobile environments.
First, we address centralized medoid monitoring. In this setting, the data objects1 in P
send updates to a central server whenever they move. The server processes the
location updates and computes/reports the new medoid set. We propose two
incremental monitoring algorithms that aim at minimizing the processing time for
medoid maintenance. In the centralized model, the objects issue frequent location
updates. This raises the additional concern about the communication cost. In
particular, in many mobile computing applications, the objects have scarce power
resources and we wish to preserve battery life by limiting the number of messages
transmitted to the server. This motivates our second, distributed processing model. In
this context, the server assigns safe regions to the data objects, which issue location
updates only if they move outside their region. We design effective safe region
computation strategies and incorporate them to our medoid monitoring framework.
We demonstrate that the distributed methods drastically reduce the object
communication overhead, while sacrificing minimal medoid quality (i.e., they result
in marginally higher average distance compared to their centralized counterparts).

The rest of the paper is organized as follows. Section 2 reviews related work.
Section 3 describes our two centralized methods, while Section 4 presents their
distributed versions. Section 5 experimentally evaluates the performance of our
algorithms. Finally, Section 6 concludes the paper.

2 Related Work

In this section, we survey previous work on medoid queries (in Section 2.1), focusing
on solutions targeted at large datasets. We also review spatial query monitoring
techniques (in Section 2.2), since we assume a similar system architecture and use
related geometric techniques and indexes.

2.1 Medoid Queries

Finding the k-medoids is a classic problem in Computational Geometry, where it is
usually referred to as the k-medians problem. Since it is NP hard, several
approximation schemes have been proposed for its solution (e.g., [ARR98]). These
schemes are of theoretical nature, aiming at graceful asymptotic bounds. More
practical solutions include hill-climbing algorithms, such as PAM and CLARA

1 Henceforth, the terms point and object are used interchangeably.

 4

[KR90]. Starting with a randomly chosen k-medoid set, these methods consider
swapping one medoid with another, randomly chosen data point. If the swap leads to
a lower average distance, then the resulting medoid set becomes the new candidate
answer. This procedure is repeated for a fixed number of possible swaps. It terminates
when no considered swap achieves a lower distance than the current medoid set, and
returns the latter as the solution. To achieve better scalability than PAM and CLARA,
Ng and Han [NH94] propose CLARANS. It builds upon CLARA, examining
however a smaller set of possible swaps, and, thus, speeding up the execution (i.e.,
converging faster to a local minimum). CLARANS is still slow for large problem
instances (being restricted to inputs of just a few thousand objects), and it is
impractical for disk-resident data. Motivated by this fact, Ester et al. [EKX95a,
EKX95b] design FOR. In FOR, dataset P is indexed with an R-tree [G84, BKSS90],
and a sample is formed by drawing one data point from each leaf of the R-tree. FOR
executes CLARANS on this sample and returns the computed medoids. Focused also
on disk-resident data, Mouratidis et al. [MPP] propose TPAQ, a method that solves k-
medoid and related problems. TPAQ assumes that P is indexed with an R-tree and
exploits its grouping properties to avoid reading the entire dataset, while achieving a
low average distance. To exemplify, consider dataset P = {p1, ..., p24} in Figure 2.1a
and its R-tree in Figure 2.1b.

N2

N1

N3

N4

N5

N6
N7

N8

N9

p1

p2

p3

p4

p 5

p20

p19

p18

p17

p 16

p 15

p 14

p13

p 12

p11

p 10p9p8

p7

p6

p 22

p23

p21

p24

s3

s2

s1

N3 N4 N5

Root node

N6 N7 N8 N9

N1 N2

N1

N2

p5 ... p8

N4

... p19

N7

p16 ... p21

N8

p20 ... p24

N9

p22

p9 ... p11

N5

p1 ... p4

N3

... p15

N6

p12

(a) Points and node extents (b) The R-tree structure

Figure 2.1: Example R-tree and TPAQ execution for 3-medoid computation

Assume that TPAQ is posed with a 3-medoid query. It descends the R-tree from
the root down to the topmost level that contains more than (or equal to) k entries. This
level is called the partitioning level, and let E denote the set of its entries. In Figure
2.1, the partitioning level is the second one, and its entries are E = {N3, ..., N9}. The
entries in E are sorted according to their center’s Hilbert value, and the resulting
sorted list is divided into k groups Si of equal cardinality (i.e., |E|/k entries each). The
sorted list in our example (as given by the Hilbert curve shown in Figure 2.1a) is N6,
N7, N8, N9, N5, N4, N3, and the 3 groups are S1 = {N6, N7}, S2 = {N8, N9}, and S3 = {N5,

 5

N4, N3}. For each Si, TPAQ computes the geometric centroid2 si and performs a
nearest neighbor (NN) search at si among the underlying data points (i.e., among the
points corresponding to the sub-trees of entries in Si). In Figure 2.1a, the centroids of
the three groups are points s1, s2, and s3 (appearing hollow). The three medoids
returned are their NNs, i.e., points p15, p22, and p6. TPAQ is shown to achieve lower
distance than FOR and exhibits better scalability.

The existing k-medoid algorithms are unsuitable for our continuous monitoring
setting. All aforementioned methods are designed for static datasets and snapshot
queries (i.e., they compute the medoids once and then terminate); their extension to
incremental medoid maintenance (in the presence of updates) is non-trivial, if
possible at all. On the other hand, the naïve approach of re-computing from scratch
the medoids (with some existing algorithm) in each update processing cycle is
prohibitively expensive in a highly dynamic scenario, failing to reuse previous results.
Additional problems of existing methods are: (i) the hill-climbing approaches (PAM,
CLARA, CLARANS, etc.) are very slow for moderate or large input sizes, while (ii)
TPAQ and FOR are designed for disk-resident data, with primary objective the
minimization of the I/O cost; disk accesses are not an issue in our main memory
setting, where CPU time (and communication cost, in the distributed case) is the only
concern. On the other hand, an important finding of previous work to our problem is
the efficiency and, more so, the efficacy of TPAQ, which motivates us to use a similar
Hilbert-based (or, in general, space filling curve-based) approach for our purposes.

Regarding medoid-related problems in dynamic settings, Guha et al. [GMM+03]
solve the k-medoid problem in a streaming environment. In the assumed model, the
points of the input dataset P stream into the system. The main memory is not enough
to store entire P, so the streamed data points are processed once and then discarded as
new ones arrive. When the entire input set is seen, the system reports its k-medoids.
[GMM+03] proposes an one-pass k-medoid algorithm that solves the above problem,
using a small amount of space. Even though this is a dynamic method, it does not
apply to our setting; in our case, (i) the memory does fit the entire dataset, but the
points therein receive location updates in an on-line fashion, and (ii) the system needs
to continuously report the k-medoid set at any time.

A problem related to k-medoids is min-dist optimal-location (MDOL) computation.
The input consists of a set of data points P, a set of existing facilities (i.e., a set of
existing medoids) and a user-specified spatial region R, wherein a new facility should
open. The output of an MDOL query is the location in R where the new facility
should be built in order to minimize the overall average distance between the data
points and their closest facility. Zhang et al. [ZDXT06] propose an exact method for
this problem. The main differences from the k-medoid problem is that (i) MDOL
assumes that a set of facilities already exists, (ii) it computes a single point (as
opposed to k), and (iii) the returned point does not necessarily belong to P, but it can
be anywhere inside region R.

The k-medoid problem is related to clustering; essentially, given the medoids, the
input dataset can be partitioned into k clusters by assigning each point to its closest
medoid. The other direction, however, does not work; although there are numerous

2 The geometric centroid of group Si is point si with coordinates si.x and si.y equal to the

average x- and y- coordinates, respectively, of the entry centers in Si.

 6

clustering methods for large input sets (e.g., DBSCAN [EKSX96], BIRCH [ZRL96],
CURE [GRS98] and OPTICS [ABKS99]), their objective is to create clusters such
that the points in any cluster are more similar to each other than to points in other
clusters. In addition to addressing a problem of different nature, most clustering
algorithms are computationally intensive and unsuitable for the highly dynamic
environments we tackle in this work.

2.2 Continuous Spatial Queries

The first spatial monitoring techniques were targeted at range queries, where the data
objects send location updates to a central server, and the latter continuously reports
the objects that fall in each monitored range. Q-index [PXK+02] processes static
range queries. It indexes the ranges using an R-tree and probes moving objects against
the index in order to determine the affected queries and update their results. SINA
[MXA04] monitors (potentially moving) range queries using a three-step spatial join
between moving objects and ranges. Mobieyes [GL04] and MQM [CHC04] follow a
distributed processing approach, where the objects utilize their computational
capabilities and suppress some location updates. In particular, all of Q-index,
Mobieyes and MQM utilize the concept of safe regions, according to which each
object p is assigned a circular or rectangular region, such that p needs to issue an
update only if it exits this area (because, otherwise, it does not influence the result of
any query). Figure 2.2 shows a range monitoring example, where the current result of
query Q1 is object p1, of Q2 is object p2, while no object qualifies queries Q3, Q4, Q5.
The safe regions for p1 and p4 are circular, while for p2 and p3 they are rectangular, as
shown in the figure (the safe rectangle for p2 coincides with the boundary of Q2). Note
that even if the objects move, unless they fall outside their assigned safe regions, no
query result can change.

Q5

p1

p2

p4

Q1

Q3

safe circle

Q2

p3

Q4

safe circle

safe rectangle

Figure 2.2: The safe regions concept

In addition to rage queries, several methods have been recently proposed for k
Nearest Neighbor (k-NN) monitoring. Koudas et al. [KOTZ04] present a system for
approximate k-NN queries over streams of multidimensional points. Yu et al.
[YPK05], Xiong et al. [XMA05] and Mouratidis et al. [MHP05] describe algorithms

 7

for exact k-NN queries; all three methods index the data with a regular grid and
maintain the k-NN results by considering only object movements that may influence
some query. The aforementioned techniques aim at low processing time. There exist,
however, methods designed for network cost minimization [MPBT05, HXL05] by
exploitation of the objects’ computational resources; their rationale is similar to that
of the safe regions explained in Figure 2.2.

3 Centralized Medoid Monitoring

In this section we present our centralized methods. We assume that dataset P consists
of |P| two-dimensional points. Although our methods are applicable to higher
dimensions, in accordance with most real-world mobile environments, we focus on
two dimensions. Furthermore, for ease of presentation, we consider a unit dataspace,
i.e., all data fall in [0,1]2. Every point p in P is a tuple of the form <p.id, p.x, p.y>,
where p.id is a unique identifier and (p.x, p.y) are p’s coordinates. Whenever p moves,
it issues an update to the monitoring server; the update has the form <p.id, p.xold,
p.yold, p.xnew, p.ynew>3, implying that p moves from (p.xold, p.yold) to (p.xnew, p.ynew). The
objects move frequently and arbitrarily.

We present two centralized medoid monitoring algorithms, based on a common
intuition exemplified in Figure 3.1. Dataset P contains two clusters C1 and C2.
Suppose that a 2-medoid query returns one medoid in C1 and another in C2. Now
consider that we wish to compute three medoids. Observe that, although C1 has a
smaller diameter than C2, it contains more points. Due to the larger cardinality of C1,
the distances of its points from its medoid affect the global average distance to a
greater extent than that of the points in C2. Therefore, placing the third medoid in C1
leads to a larger distance reduction than placing it in C2. Intuitively, more medoids
must be assigned to denser areas of the dataspace.

C1

C2

medoids

Figure 3.1: The three medoids of a dataset consisting of two clusters

Motivated by this observation, our algorithms (i) partition the points in P into k
groups of (roughly) equal cardinality and, then, (ii) select the most centrally located
object from each group as the corresponding medoid. To quickly perform step (i) we
project the points on a one-dimensional space using a space filling curve. We employ
the Hilbert curve since it is shown to best preserve locality compared to alternatives
[MJFS01]. Next, we partition the Hilbert-sorted list of points into k groups of equal

3 If the update is an insertion (deletion), p.xold, p.yold (p.xnew, p.ynew) are set to a negative value.

 8

cardinality (i.e., |P|/k). Due to the locality preservation of the Hilbert curve, the
resulting groups can be regarded as well-defined partitions of P in the two-
dimensional space. Finally, we extract a medoid from each group; the medoid is the
point in the group with the median Hilbert value, as it is expected to be the most
centrally located. The above rationale underlies both modules of our algorithms,
namely, the initial medoid computation and their maintenance.

3.1 The HBM algorithm

Our first method is Hilbert-based Monitoring (HBM). It indexes the data objects with
an in-memory 2-3 B+-Tree [C79] (i.e., a B+-Tree where each internal node has two or
three children), using their Hilbert values as search keys. We denote this tree by BT.
At the leaf level, except for the standard right sibling pointers, BT is modified to also
accommodate left sibling pointers. In other words, the leaves are organized as a
doubly connected linked list. When the continuous medoid query is installed at the
server for the first time and BT is built, every entry E in an internal node N
temporarily stores aggregate information about the number of points E.a contained in
its subtree. E.a facilitates the initial medoid computation and is discarded afterwards.

In particular, according to our general approach, the i-th medoid of P is the [(i-
0.5)·|P|/k]-th object in the linear order imposed by the Hilbert values. HBM locates
the k medoids by performing k traversals in BT, at a total cost of O(k·log|P|). Before
each traversal i, an auxiliary variable V is initialized to zero. The traversal starts from
root NR and it checks whether V+E1.a is larger than or equal to (i-0.5)·|P|/k, where E1
is NR’s first entry. If that is the case, the medoid is located in E1’s subtree and,
therefore, the traversal continues by visiting E1’s child. Otherwise, E1.a is added to V
and the algorithm continues similarly by checking V+E2.a against (i-0.5)·|P|/k (E2 is
NR’s second entry). V always keeps the number of points preceding (in the Hilbert
order) the point with the smallest search key that is reachable by the traversal. Finally,
the algorithm reaches the leaf node containing the i-th medoid. For every computed
medoid m, an array M of size k stores a tuple of the form <m.id, m.hv, m.ptr, m.off>,
where m.id is the identifier of the point selected as m, m.hv is m’s Hilbert value, m.ptr
points to the leaf node of BT that accommodates m, and m.off is an integer (initialized
to zero) used by the maintenance module and whose functionality is explained later.
The temporary E.a values are discarded after the end of the initial computation step.
Figure 3.2 summarizes the data structures in HBM.

2-3 B+ -Tree (BT)

M

<mi.id, mi.hv, mi.ptr, mi.off>

1 2 ... i ... k

Figure 3.2: The data structures of the HBM method

 9

The server periodically receives updates from the objects in batches. HBM
accordingly updates BT, after computing the necessary Hilbert values of the inserted,
deleted or moving points. Note that the movement of an object involves its deletion
from the index followed by its subsequent re-insertion with the new Hilbert value.
Whenever a split or merge operation moves a medoid m to a different leaf node, the
corresponding m.ptr must also be altered in M. While updates are reflected in BT,
HBM stores some book-keeping information, to be used for result maintenance
according to its medoid selection strategy. In particular, after processing the
insertion/deletion of a point p, HBM performs a binary search in array M to locate the
leftmost medoid mu with Hilbert value greater than (or equal to) p.hv. In case p
initiated an insertion (deletion), the algorithm increases (decreases) mu.off by one.
Particular care must be taken when a medoid m is deleted. In this case, HBM
substitutes it with its predecessor in the Hilbert order and decreases m.off by one.

After processing all updates, HBM computes the new medoids as follows. The i-th
medoid mi was formerly data point pold at position (i-0.5)·|P|/k. After the updates, pold
moves to position (i-0.5)·|P|/k + Σi-1

j=1 mj.off. The actual medoid must be located at
position (i-0.5)·|P΄|/k, where P΄ is the updated version of dataset P (which may have
different cardinality if new objects were inserted or existing ones deleted). Therefore,
the new medoid mi can be found OFFi = (i-0.5)·|P΄|/k - (i-0.5)·|P|/k - Σi-1

j=1 mj.off
positions to the right or left of pold in the linear order, depending on whether OFFi is
positive or negative, respectively. For every medoid mi in M, HBM first visits the leaf
node pointed by mi.ptr to find its old corresponding point pold. Then, using the
left/right sibling pointers of BT, it locates the new medoid and properly updates mi’s
entry in M. The pseudocode of the maintenance procedure is given in Figure 3.3.

Function updateMedoids (array M, Tree T)
1. Initialize V to 0
2. For i=1 to k
3. Locate medoid mi in leaf M[i].ptr of T
4. OFFi = (i-0.5)·|P΄|/k - (i-0.5)·|P|/k - V
5. If OFFi = = 0, continue
6. Else if OFFi > 0, find point p located |OFFi| positions to the right of mi
7. Else if OFFi < 0, find point p located |OFFi| positions to the left of mi
8. V += M[i].off;
9. Assign p.id, p.hv, the pointer of the leaf of T that accommodates p and 0 to M[i].id,

M[i].hv, M[i].ptr and M[i].off, respectively

Figure 3.3: The maintenance module of HBM

Figure 3.4 illustrates the initial computation and maintenance of k = 2 medoids in a
set of points, which at timestamp T1 has cardinality 14. For ease of demonstration, we
omit the BT operations and focus on the leaf level of the tree, which constitutes a
doubly connected linked list of points sorted on their Hilbert values. At timestamp T1,
the set is subdivided into two subsets of seven points each. The medians of the subsets
(p4 and p12) are selected as the medoids (m1 and m2, respectively). At timestamp T2,
four updates occur; p1 and p13 are deleted, and p3 and p5 move to new positions. Due
to p1’s deletion, m1.off is decreased by one. On the contrary, the deletion of p13 does
not affect any off value because there is no medoid with higher (or equal) Hilbert

 10

value. Regarding p3 and p5, recall that a point movement is handled as a deletion
followed by an insertion. Upon p3’s deletion, the algorithm decreases m1.off.
Subsequently, the point is re-inserted in a position between m1 and m2 and, therefore,
m2.off is increased by one. Finally, p5’s movement causes m2.off to decrease (due to its
deletion) and immediately increase (due to its re-insertion) by one, because both its
old and new Hilbert values are between m1.hv and m2.hv. Let old_posi be the position
(in the Hilbert order) of the point that was selected as medoid mi at timestamp T1.
Also let curr_posi be the position of the new point to become mi at timestamp T2. For
m1, old_pos1 = 4, curr_pos1 = 3, and OFF1 = 1. Similarly for m2, old_pos2 = 11,
curr_pos2 = 9, and OFF2 = -1. The algorithm locates the new medoids p3 and p11, by
moving one position to the right and one to the left from old medoids p4 and p12,
respectively.

p2 p3

p1 p7

p6

p4

p5

p10

p14

p9

p8

p13

p11
p12

p1 p2 p3 p4 p5 p6 p7 p8 p10 p11 p12 p9 p13 p14

Hilbert Order
Subset 1 Subset 2

Timestamp T1

p2

p7

p6

p4

p10

p14

p9

p8

p11
p12

Timestamp T2

p5

p3
Updates:
DEL p 1, m1.off--
DEL p 13

MOV p3, m1.off--, m2.off++
MOV p5, m2.off--, m2.off++

p2 p4 p3 p6 p7 p5 p8 p10 p11 p12 p9 p14

Hilbert Order
Subset 1 Subset 2

m1 m2
OFF1 = curr_pos1 - old_pos1 -

m1.off = 3-4-(-2)=1
OFF2 = curr_pos2 - old_pos2 -

(m1.off+m2.off) = 9-11-(-2+1)=-1

Figure 3.4: A medoid monitoring example in HBM

3.2 The GBM algorithm

The Grid-based Monitoring (GBM) algorithm utilizes a C×C regular grid for indexing
P. Let δ be the side-length of each cell. A point p in P with coordinates (p.x, p.y) can
be located in constant time in cell ci,j (i.e., the cell in column i and row j, starting from
the low-left corner of the grid), where i = ⎣p.x/δ⎦ and j = ⎣p.y/δ⎦. GBM imposes a
linear order on the cells by sorting them according to the Hilbert values of their
centers. Every cell c is associated with a tuple <c.n, c.prev, c.next, c.BT>, where c.n is
the cardinality of the set of points contained in c, c.prev and c.next are the cells
preceding and succeeding c in the Hilbert order respectively, and c.BT is a BT that
indexes the points in c (using their Hilbert values as search keys). Similarly to HBM,
the internal nodes in the BTs temporarily incorporate aggregate information, which is
discarded after the initial computation of the medoids.

 11

The grouping strategy of GBM is similar to HBM, the difference being in the
linear order of the points, which now takes into account firstly the order of the cells.
Specifically, the points are considered sorted according to the following rules; (i) a
point p1 in cell c1 precedes point p2 in cell c2, if c1 precedes c2 in their Hilbert order,
and (ii) the order of the points in the same cell is determined by their Hilbert values.
Following similar reasoning as in HBM, the i-th medoid mi is the [(i-0.5)·|P|/k]-th
object in the above order. GBM starts by initializing an auxiliary variable V to zero
and scans the linked list of the (sorted) cells. To locate medoid mi, in every visited cell
ci, it checks whether V+ci.n is larger than or equal to (i-0.5)·|P|/k. If that is the case, it
traverses ci.BT in order to find the [V+ci.n-(i-0.5)·|P|/k]-th object in the cell, which is
then selected as medoid mi. Otherwise, it adds ci.n to V and continues to the next cell.
V keeps the number of points encountered by the scan so far. Note that GBM locates
all medoids in a single linear scan of the cells, i.e., after finding medoid mi, it does not
restart the scan for finding mi+1; instead, it continues from the cell that contains mi.
Finally, it maintains an array M with functionality identical to that used by HBM.
Figure 3.5 depicts the data structures of GBM.

M

<mi.id, mi.hv, mi.ptr, mi.off >

1 2 ... i ... k

c.BT
c

c.prev

c.next

c.n

Figure 3.5: The data structures of the GBM method

For every received update, GBM first determines in constant time the cell c where
the insertion/deletion takes place, and properly updates c.BT. Subsequently, it scans M
and updates the off value of the leftmost medoid with Hilbert value larger than or
equal to that of the object that initiated the update, in a similar fashion to HBM. After
processing all the updates, the maintenance module of GBM identifies the points to be
selected as the new medoids as follows. It scans M and for every mi, it computes OFFi
in a fashion similar to Section 3.1. Suppose that mi lies in cell c. Then, starting from
the leaf of c.BT that accommodates mi and is pointed by mi.ptr, it searches for the
point that will be selected as the new mi. This point lies OFFi positions to the left or
right of old mi, depending on whether OFFi is negative or positive, respectively. If the
search reaches the leftmost or rightmost (in the Hilbert order) point of cell c, it
continues to the cell pointed by c.prev or c.next, respectively. Note that the algorithm
may skip entire cells (i.e., it may not traverse their BTs at all), since it can always
determine whether mi is located in a visited cell by comparing the cell’s cardinality
against OFFi. After finding a new medoid, GBM updates the respective entry in M
accordingly.

In Figure 3.6 we exemplify the initial medoid computation and monitoring in a
scenario where k = 2 and P contains points p1 to p14. Consider cells c2,2 and c1,2 at
timestamp T1. The Hilbert curve first passes through c2,2 and, thus, p11 precedes p1 in

 12

the GBM order, although it succeeds it in the global Hilbert order (i.e., p11.hv > p1.hv,
where p11.hv and p1.hv are the Hilbert values of p11 and p1, respectively). At
timestamp T1, the medoids are m1 = p4 and m2 = p14, since they are at positions
0.5·|P|/k = 4 and 1.5·|P|/k = 11, respectively, in the linear order. At timestamp T2,
objects p7, p6 and p11 issue updates, as shown in the figure. Their movement leads to
OFF1 = 1 and OFF2 = 1, and updates the medoids to m1 = p7 and m2 = p11.

p1
p2

p3

p4

p6
p5

p7

p8

p9

p10p11

p12

p13

p14

p3 p5 p6 p4 p2 p11 p1 p13 p12 p10 p14 p7 p 8p9

c1,1 c2,1 c2,2 c3,3 c3,2 c3,1c1,2 c4,2

p3 p5 p4 p7 p2 p1 p13 p12 p10 p14 p11 p9 p8 p6

c1,1 c2,1 c2,2 c3,3 c3,2 c3,1c1,2

Updates:
MOV p7, m2.off++
MOV p6, m1.off--
MOV p11, m2.off--

m1 m2

Timestamp T1

OFF1 = curr_pos1 - old_pos1 -
m1.off = 4-4-(-1)=1

OFF2 = curr_pos2 - old_pos2 -
(m1.off+m2.off) = 11-11-(-1+0)=1

p1
p2

p3

p4

p6p5

p8

p9

p10

p11

p12

p13

p14

Timestamp T2

p7

c1,1 c2,1 c3,1

c1,2 c2,2 c3,2

c1,3 c2,3 c3,3

c1,1 c2,1 c3,1

c1,2 c2,2 c3,2

c1,3 c2,3 c3,3

Figure 3.6: A medoid monitoring example in GBM

Compared to HBM, index update and medoid maintenance in GBM are expected
to be faster. HBM keeps a common BT over all |P| points, which leads to an O(log|P|)
cost for every point insertion or deletion. On the other hand, letting c be the cell of the
inserted/deleted point, c.BT contains c.n objects (where c.n << |P|), requiring
O(log|c.n|) time per update. Furthermore, maintaining the medoids is also more
efficient in GBM, because for large OFFi values, entire cell contents may be skipped
when sliding in the linear point order towards the new medoid position. Another
major advantage of GBM over HBM, is the fact that its data index is compatible with
existing methods for other spatial query types; most range and nearest neighbor
monitoring algorithms use a regular grid index4. This allows GBM to be used in
conjunction with other methods, in a system that answers general spatial queries over
moving objects, utilizing a single data index.

A final remark concerns the average distance, which is in general different but
similar for GBM and HBM, since their medoid selection rationale is alike. In
particular, if the grid granularity in HBM is selected so that C is a power of two
(recall that the grid has C×C cells), their medoids are identical. The reason is that the
Hilbert values themselves are computed by definition based on a transparent space
partitioning with a grid, whose granularity on each axis is always a power of two (this
power is called the order of the Hilbert curve). If C is also a power of two, the cells of
the object grid contain continuous, non-overlapping intervals of the curve. In other
words, if cell c1 precedes c2 on the curve, then any point p1 in c1 precedes every p2 in
c2. In turn, this fact implies that the linear point orders of GBM and HBM are
identical and, thus, the medoids are the same.

4 All methods covered in Section 2.2 use a regular grid, except for [MPBT05] and [HXL05],

where processing time minimization is not the main objective.

 13

4 Distributed Medoid Monitoring

The main idea in the distributed version of our methods is to allow objects to move
within assigned safe regions, without having to transmit updates to the server. Since
our general medoid selection strategy relies on a linear point order, the safe regions
are defined with respect to the neighboring objects (in the order). Particularly, let
leeway λ be an integer system parameter. The safe region of the i-th object in the
order pi is a Hilbert interval SRλ

i = [pi.srL, pi.srR]. The left boundary pi.srL is the mean
of the Hilbert values of pi and its λ-th left neighbor pi-λ (i.e., pi.srL = ⎣(pi.hv +
pi-λ.hv)/2⎦). The right boundary pi.srR is set similarly with respect to the λ-th right
neighbor (i.e., pi.srR = ⎡(pi.hv + pi+λ.hv)/2⎤). Object pi may change location without
issuing an update, as long as pi.hv ∈ SRλ

i . When pi does move outside SRλ
i , it sends its

new location to the server. The latter updates its index and the medoid set
accordingly5, and assigns a new safe region to pi. Note that the new SRλ

i is defined
based on the latest point positions reported. Particularly for GBM, the linear point
order takes into account the grid cells ordering. Thus, the safe regions are defined
within each cell individually (i.e., in the Hilbert order of the objects therein).
Whenever an object exits its cell, it sends an update regardless of whether it violates
its safe region.

Figure 4.1 demonstrates the safe region function in the case of HBM (the case of
GBM is similar, subject to the aforementioned modifications), showing the position of
the points on the Hilbert curve. At timestamp T1, the safe region SRλ=1

3 (SRλ=2
3) of p3 is

defined according to p2 and p4 (p1 and p5) for λ = 1 (λ = 2). Similarly, SRλ=1
4 is

determined by p3 and p5. Assuming that λ = 1, at timestamp T2, points p3 and p4 move.
However, only p3 issues an update, because p4 remains within its safe region. The
solid points in the figure correspond to the positions known by the server, the hollow
point is p3’s old Hilbert value, while the grey is p4’s actual one. Object p3 is assigned
a new region, based on the Hilbert values of p2 and p4. Note that the server is not
aware of the new location of p4 and, thus, uses the last reported one (as of T1).

22 30 48

p1 p2 p3 p4 p5

56

]39,26[1
3 ==λSR

]43,18[2
3 ==λSR

]52,39[1
4 ==λSR

6
T1

22 48
p1 p2 p3 p4 p5

56

]37,23[1
3 ==λSR

]52,39[1
4 ==λSR

6 25
T2

4230

Figure 4.1: Safe regions and update handling

5 Medoid maintenance at the server side is identical to the centralized case.

 14

5 Experimental Evaluation

In this section we evaluate the performance of our methods, in terms of processing
time (at the server), number of object updates (i.e., communication cost for the
objects) and achieved average distance. We generate datasets of cardinality |P|
ranging between 10K and 200K objects as follows. For each tested |P|, we randomly
select the initial position and the destination of each object among the points of a real
spatial dataset (North America, available at www.maproom.psu.edu/dcw). The object
follows a linear trajectory between the two points. Upon reaching the endpoint, a new
random destination is selected and the process is repeated. At every timestamp, a
percentage a of the objects move towards their endpoint (while the remaining ones
remain static), covering a distance v. We refer to a and v as the object agility and
velocity, respectively. The velocity is expressed as a percentage of the dataspace
extent on the x axis (we have a [0,104]×[0,104] dataspace). The simulation length is
100 timestamps for each setting, and the reported measurements are the average
observed values over all timestamps. We process continuous k-medoid queries for k
between 2 and 512. We evaluate our four methods HBM, GBM, dHBM, and dGBM
(where the latter two are the distributed versions of HBM and GBM). Also, we use as
a competitor the TPAQ method with a main memory R-tree, since none of the other
existing algorithms works for the large cardinalities tested, even for snapshot queries.
To adapt TPAQ to medoid monitoring, we rerun it for the timestamps where (i) some
of the medoids move, or (ii) the object updates affect the extents of the R-tree entries
at the partitioning level. In each experiment we vary one parameter, while setting the
remaining to their default values. The parameter ranges and defaults are shown in
Table 5.1. For GBM and dGBM we fine-tuned the grid granularity (with respect to
the average distance) for the default settings and use the best one (100×100) in all our
experiments. We use a machine with a 3.2 GHz Pentium IV CPU and 1 GB RAM.

Parameter Default Range
Dataset cardinality |P| 100K 10, 50, 100, 150, 200 (K)
No. of medoids k 32 2, 8, 32, 128, 512
Agility a 50% 10, 30, 50, 70, 100 (%)
Velocity v 0.5% 0.1, 0.3, 0.5, 0.7, 1 (%)
Leeway λ 300 100, 200, 300, 400, 500

Table 5.1: Parameter ranges and default values

In Figure 5.1, we measure the effect of object cardinality |P|, varying it from 10K
to 200K objects and setting the other parameters to their defaults. Figure 5.1a shows
the CPU cost (in logarithmic scale) for medoid maintenance per timestamp, i.e., the
time to update the object index and the medoids. We observe that the centralized
methods have similar cost (with GBM being slightly faster). The distributed
algorithms have shorter running time, because they process fewer updates; dHBM
(dGBM) takes less than 45% (60%) of the time of its centralized counterpart. dHBM
is faster than dGBM, because the latter’s safe regions are practically smaller, as they
are bounded by the grid cell boundaries (leading to more reported updates and, thus,
higher processing cost). Compared to our methods, TPAQ is slower by an order of

 15

magnitude, mainly due to the excessive update cost of its R-tree index. An important
remark about Figure 5.1a (and all remaining CPU time charts) is that we focus on
pure maintenance cost, i.e., we exclude the initial k-medoid computation. For the sake
of completeness, the first-time medoid extraction for the default setting takes 12.9,
12.4 and 54.4 sec for HBM, GBM and TPAQ, respectively (the times for dHBM and
dGBM are identical to HBM and GBM).

HBM GBM dHBM dGBM TPAQ centralized dHBM dGBM HBM GBM dHBM dGBM TPAQ

10

10

1

10

10

10K 50K 100K 150K 200K

2

-1

-2

CPU time (sec)

|P| 0

20

40

60

80

100

120

10K 50K 100K 150K 200K

Updates issued (thousands)

|P|
310

320

330

340

350

360

370

10K 50K 100K 150K 200K

Average distance

|P|

(a) CPU time (b) Number of updates (c) Average distance

Figure 5.1: Performance versus dataset cardinality |P|

Figure 5.1b shows the number of updates sent to/processed by the server in the
same experimental setup. All centralized methods (i.e., HBM, GBM, TPAQ) have the
same communication cost, with the objects reporting their positions whenever they
move. On the other hand, the safe regions of dHBM and dGBM save around 55% and
40% of these updates, respectively. dGBM avoids less updates than dHBM, due to the
necessary updates required when the objects move to another cell, as explained in the
context of Figure 5.1a. Figure 5.1c illustrates the achieved distance for the various
cardinalities, expressed in distance units in our [0,104]×[0,104] dataspace. We observe
that the distributed methods compute only slightly worse medoid sets, verifying their
efficacy. Note that both versions of GBM are better than those of HBM. The reason is
that HBM is solely based on the one-dimensional Hilbert mapping, while GBM
preserves a stronger connection to the original (two-dimensional) space, due to its
spatial grid index. For a similar reason, TPAQ achieves 4 to 11% smaller distance
than our methods, exploiting the graceful grouping properties of its R-tree. However,
this benefit comes to a prohibitive update cost, leading to an excessive processing
time (see Figure 5.1a). Another remark for TPAQ is that it improves with |P|; for a
denser space, the nearest neighbor queries (in its final step) retrieve medoids that lie
closer to the “ideal” geometric centroids of the k groups, leading to a lower distance.

In Figure 5.2 we use the default settings and vary k between 2 and 512. Figure 5.2a
shows the CPU time. Again dGBM is the fastest, for the reasons explained above. We
observe that the processing cost is almost constant for each method and unaffected by
k. The reason is that, in all methods (and especially in TPAQ), the monitoring cost is
dominated by the number of processed updates (mainly due to index maintenance),
which is irrelevant to k. Furthermore, in our algorithms, for larger k, there are more
medoids to maintain, but the offsets (to slide in the linear point order) are smaller. On
the other hand, the average distance drops with k for all methods, and our techniques’
difference from TPAQ decreases.

 16

Figure 5.2: Performance versus number of medoids k

In Figure 5.3 we examine the effect of object agility a, with 10% up to 100% of the
data points moving at each timestamp. The CPU cost (Figure 5.3a) increases with a
due to the larger number of updates processed. Figure 5.3b shows the number of
issued updates, which, as expected, is linear to a. In terms of average distance (Figure
5.3c), there is not much fluctuation; the small differences are due to the randomness
of the dataset generation.

HBM GBM dHBM dGBM TPAQ centralized dHBM dGBM HBM GBM dHBM dGBM TPAQ

10

10

1

10

10

10 30 50 70 100

2

-1

-2

CPU time (sec)

a
0

20

40

60

80

100

120

10 30 50 70 100

Updates issued (thousands)

a 300

310

320

330

340

350

360

370

380

10 30 50 70 100

Average distance

a

(a) CPU time (b) Number of updates (c) Average distance

Figure 5.3: Performance versus object agility a

In Figure 5.4 we vary the object velocity v from 0.1 to 1% of the dataspace extent
on the x dimension. Figure 5.4a shows the CPU time. The centralized methods are
unaffected by v. On the other hand, the cost of the decentralized increases as more
objects move outside their safe regions for larger v, sending more updates to the
server for processing. This is also evident in Figure 5.4b. Interestingly, for v = 0.1%,
dGBM incurs less object updates than dHBM (because its cells are large with respect
to v, without practically limiting the safe regions), while for v = 1% their number is
almost as high as for the centralized methods. The average distance (Figure 5.4c) is
similar for all values of v.

HBM GBM dHBM dGBM TPAQ centralized dHBM dGBM HBM GBM dHBM dGBM TPAQ

10

10

1

10

10

0.1 0.3 0.5 0.7 1

CPU time (sec)

v

2

-1

-2 0

10

20

30

40

50

60

0.1 0.3 0.5 0.7 1

Updates issued (thousands)

v
310

320

330

340

350

360

370

0.1 0.3 0.5 0.7 1

Average distance

v

(a) CPU time (b) Number of updates (c) Average distance

Figure 5.4: Performance versus object velocity v

HBM GBM dHBM dGBM TPAQ

10

10

1

10

10

2 8 32 128 512

2

-1

-2

CPU time (sec)

k
0

200

400

600

800

1000

1200

1400

1600

1800

2 8 32 128 512

Average distance

k

(a) CPU time (b) Average distance

 17

Figure 5.5 investigates the effect of the leeway λ, varying it from 100 to 500. The
performance of the centralized methods is identical, because they do not use safe
regions. As shown in Figure 5.5b, for λ = 500, dHBM achieves 65% reduction of the
location updates. For dGBM, however, there is a marginal decrease, because the safe
regions are restricted by the grid cells, rather than by λ. The number of updates has a
direct impact on the CPU time and, thus, the trends in Figure 5.5a are similar as in
Figure 5.5b. In terms of average distance, λ affects only dHBM, whose performance
deteriorates for larger λ. This trend verifies the tradeoff between update cost and
medoid quality. On the other hand, dGBM is not affected because the server processes
a similar set of updates.

HBM GBM dHBM dGBM centralized dHBM dGBM HBM GBM dHBM dGBM

0

1

2

3

4

5

6

7

8

100 200 300 400 500

CPU time (sec)

λ
0

10

20

30

40

50

60

100 200 300 400 500

Updates issued (thousands)

λ
354

356

358

360

362

364

366

100 200 300 400 500

Average distance

λ

(a) CPU time (b) Number of updates (c) Average distance

Figure 5.5: Performance versus leeway λ

6 Conclusion

In this paper we address the problem of k-medoid monitoring. To the best of our
knowledge this is the first work on this topic. We consider a central server that
continuously receives the locations of frequently moving objects and incrementally
maintains their medoid set. Without making any assumption about the data moving
patterns, our methods achieve low running times while keeping the medoid quality
high. Furthermore, we consider distributed environments, where the data objects have
limited power resources and attempt to preserve them by reducing the number of
updates they transmit to the server. In this context, the server assigns safe regions to
the objects, which report their position only when they exit their region. We evaluate
our methods through extensive experiments and investigate tradeoffs between
communication cost and medoid quality.

Acknowledgements

This work was supported by grant HKUST 6184/06E from Hong Kong RGC, and by
an award from the Lee Foundation.

 18

References

[ARR98] Arora, S., Raghavan, P., Rao, S. Polynomial Time Approximation Schemes for
Euclidean k-Medians and Related Problems. STOC, 1998.

[ABKS99] Ankerst, M., Breunig, M., Kriegel, H.P., Sander, J. OPTICS: Ordering Points To
Identify the Clustering Structure. SIGMOD, 1999.

[BKSS90] Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B. The R*-tree: An Efficient and
Robust Access Method for Points and Rectangles. SIGMOD, 1990.

[C79] Comer, D. The Ubiquitous B-Tree. ACM Computing Surveys, 11(2): 121-137, 1979.
[CHC04] Cai, Y., Hua, K., Cao, G. Processing Range-Monitoring Queries on Heterogeneous

Mobile Objects. MDM, 2004.
[EKX95a] Ester, M., Kriegel, H. P., Xu, X. A Database Interface for Clustering in Large Spatial

Databases. KDD, 1995.
[EKX95b] Ester, M., Kriegel, H. P., Xu, X. Knowledge Discovery in Large Spatial Databases:

Focusing Techniques for Efficient Class Identification. SSD, 1995.
[EKSX96] Ester, M., Kriegel, H. P.,Sander, J., Xu, X. A Density Based Algorithm for Discovering

Clusters in Large Spatial Databases with Noise, KDD, 1996.
[G84] R-Trees: A dynamic index structure for spatial searching. SIGMOD, 1984.
[GJ79] Garey, M., Johnson, D. Computers and Intractability: A Guide to the Theory of NP-

Completeness. W.H. Freeman, 1979.
[GL04] Gedik, B., Liu, L. MobiEyes: Distributed Processing of Continuously Moving Queries

on Moving Objects in a Mobile System. EDBT, 2004.
[GMM+03] Guha, S., Meyerson, A., Mishra, N., Motwani, R., O'Callaghan, L. Clustering Data

Streams: Theory and Practice. IEEE TKDE, 15(3): 515-528, 2003.
[GRS98] Guha, S., Rastogi, R., Shim, K. CURE: An Efficient Clustering Algorithm for Large

Databases. SIGMOD, 1998.
[HXL05] Hu, H., Xu, J., Lee, D. A generic framework for monitoring continuous spatial queries

over moving objects. SIGMOD, 2005.
[KOTZ04] Koudas, N., Ooi, B., Tan, K., Zhang, R. Approximate NN queries on Streams with

Guaranteed Error/performance Bounds. VLDB, 2004.
[KR90] Kaufman, L., Rousseeuw, P. Finding Groups in Data. Wiley-Interscience, 1990.
[MHP05] Mouratidis, K., Hadjieleftheriou, M., Papadias, D. Conceptual Partitioning: An

Efficient Method for Continuous Nearest Neighbor Monitoring. SIGMOD, 2005.
[MJFS01] Moon, B., Jagadish, H.V., Faloutsos, C., Saltz, J.H. Analysis of the Clustering

Properties of the Hilbert Space-Filling Curve. IEEE TKDE, 13(1): 124-141, 2001.
[MPBT05] Mouratidis, K., Papadias, D., Bakiras, S., Tao, Y. A Threshold-based Algorithm for

Continuous Monitoring of k Nearest Neighbors. IEEE TKDE, 17(11): 1451-1464,
2005.

[MPP] Mouratidis, K., Papadias, D., Papadimitriou S. Tree-based Partition Querying: A
Methodology for Computing Medoids in Large Spatial Datasets. To appear in VLDBJ.

[MXA04] Mokbel, M., Xiong, X., Aref, W. SINA: Scalable Incremental Processing of
Continuous Queries in Spatio-temporal Databases. SIGMOD, 2004.

[NH94] Ng, R., Han, J. Efficient and Effective Clustering Methods for Spatial Data Mining.
VLDB, 1994.

[PXK+02] Prabhakar, S., Xia, Y., Kalashnikov, D., Aref, W., Hambrusch, S. Query Indexing and
Velocity Constrained Indexing: Scalable Techniques for Continuous Queries on
Moving Objects. IEEE Transactions on Computers, 51(10): 1124-1140, 2002.

[XMA05] Xiong, X., Mokbel, M., Aref, W. SEA-CNN: Scalable Processing of Continuous K-
Nearest Neighbor Queries in Spatio-temporal Databases. ICDE, 2005.

[YPK05] Yu, X., Pu, K., Koudas, N. Monitoring K-Nearest Neighbor Queries Over Moving
Objects. ICDE, 2005.

[ZDXT06] Zhang, D., Du, Y., Xia, T., Tao, Y. Progressive Computation of the Min-Dist Optimal-
Location Query. VLDB, 2006.

[ZRL96] Zhang, T., Ramakrishnan, R., Livny, M. BIRCH: An Efficient Data Clustering Method
for Very Large Databases. SIGMOD, 1996.

